LECTURE OUTLINE Practice Exam

Professor Leibon

Math 15

Oct. 11, 2004

Recall

$$
\begin{gathered}
\frac{d \hat{r}}{d t}=\dot{\theta} \hat{\theta} \\
\frac{d \hat{\theta}}{d t}=-\dot{\theta} \hat{r} \\
\frac{d \vec{r}}{d t}=\dot{r} \hat{r}+r \dot{\theta} \hat{\theta} \\
\frac{d^{2} \vec{r}}{d t^{2}}=\left(\ddot{r}-r \dot{\theta^{2}}\right) \hat{r}+(2 \dot{r} \dot{\theta}+r \ddot{\theta}) \hat{\theta} \\
\int \frac{1}{1+x^{2}} d x=\arctan (x)+C
\end{gathered}
$$

Problem 1-4 (Random and Slightly Modified HW -

no friction or polar)

(Ex. 54) The coordinates of a vector in three-dimensional space is (a, b, c).
(a) Express the vector as a sum of scalar multiples of the standard basis vectors.
(b) Find the magnitude (norm) of this vector.
(c) Find a unit vector in the direction of the given vector.

Problem 5 (Random and Slightly Modified Book

Example)

(Ex. 20) An object is moving around the circle $x^{2}+y^{2}=4$ in the x, y plane (where the unit of distance is measured in meters) in a clockwise direction at a constant speed of 2 meters per second. Assume its initial position is $2 \hat{i}$.
(a) Find its position after 5 seconds.
(b) Find a vector representing its velocity when it is located at the point with position vector
$\sqrt{2} \hat{i}+\sqrt{2} \hat{j}$.

Problem 6 (Slightly Modified Class Example: Cycloid, Ellipse, Pendulum....)

Suppose we have an ellipse and know that

$$
\frac{d}{d t} \vec{r}(t)=\frac{e^{2} d \sin (t)}{(1+e \cos (t))^{2}} \hat{r}+\frac{e d}{1+e \cos (t)} \hat{\theta}
$$

Express this vector in Cartesian Coordinates.

Problem 7 (Theory Based: dot product rules, conservation of energy,work def...)

Use the definition of dot product and the rules of one dimensional calculus to justify that

$$
\frac{d}{d t}(\vec{v} \cdot \vec{w})=\left(\frac{d}{d t} \vec{v}\right) \cdot \vec{w}+\vec{v} \cdot\left(\frac{d}{d t} \vec{w}\right) .
$$

Problem 8: Synthesis of material My Choice!

The force of gravity exerted by a massive object of mass M located at the origin of our three-dimensional axes on a small object of mass m located a distance r from the origin has magnitude $\frac{m M g}{r^{2}}$ and acts directly towards the origin. Consider the work done by this force on the small object as it moves from the point $(0,4,0)$ to $(2,0,0)$ in a straight line.
(a) Without computation, should this work be positive or negative? Explain.
(b) Compute the work.
(c) Suppose I told you that this force was a conservative. Find a second, easier way to compute this force with this information. Do the computation.

