LECTURE OUTLINE Exam 2 Review

Professor Leibon

Math 15

Nov. 8, 2004

Exam 2

Exam 2:

1 Problem Complex Numbers
1 Problem from Polar Problems.
2 Problems Taylor Series
2 Problems Chapter 6 Material
2 Problems Chapter 5 Material
$\geq 5 / 8 \mathrm{Hw}, \leq 1 / 8$ synthesis, $\leq 1 / 8$ "theory", and
the remainder based on book and class examples.

Complex

Express the following in the form $a+b i$

$$
(2+5 i)\left(7 e^{i \frac{\pi}{4}}\right)
$$

Polar

Suppose I slowly spin a ball so that it spins at a constant rate of $(1 / 8) \frac{\text { rotation }}{\text { sec }}$ around the axis $\hat{k}=\frac{1}{\sqrt{3}}(-\hat{x}-\hat{y}+\hat{z})$. Further suppose my ball has radius $.25 f t$ and that my ball's spin is such that the direction $\hat{i}=\frac{1}{\sqrt{2}}(-\hat{x}-\hat{z})$ rotates towards $\hat{j}=\hat{k} \times \hat{i}$.
(a). Show \hat{i}, \hat{j} and \hat{k} are pairwise orthogonal and unit length.
(b) What is the position of a point that starts at $.25 \hat{i}$ after 9 seconds in the $\hat{x}, \hat{y}, \hat{z}$ coordinates.

Taylor

Let $P_{n}(x)$ be the nth Taylor polynomial at $x=0$ for $f(x)=\frac{1}{2-x}$.

1. Find n large enough so that $\left|f(.5)-P_{n}(.5)\right|<.001$. Justify you answer.
2. Find the largest number r such that for $-r<x<r$ it true that $\lim _{n \rightarrow \infty}\left|f(x)-P_{n}(x)\right|=0$. Justify you answer.
3. What is Taylor series for $f(x)$ centered around $x=0$.
4. For which values of x (if any) does $f(x)$ equal the power series in part 3 and why.

Chapter 6: a theory example

Justify: $\vec{F}=-\nabla V$ implies that \vec{F} is conservative.

Chapter 5

Show if \vec{v} is in the same plane as \vec{u} and \vec{w} then the triple product of \vec{v}, \vec{u}, and \vec{w} is zero.

