LECTURE OUTLINE Exam 2 Review

Professor Leibon

Math 15

Nov. 8, 2004

Exam 2

Exam 2:

- 1 Problem Complex Numbers
- 1 Problem from Polar Problems.
- 2 Problems Taylor Series
- 2 Problems Chapter 6 Material
- 2 Problems Chapter 5 Material
- $\geq 5/8$ Hw, $\leq 1/8$ synthesis, $\leq 1/8$ "theory", and

the remainder based on book and class examples.

Complex

Express the following in the form a + bi

 $(2+5i)(7e^{i\frac{\pi}{4}}).$

Polar

Suppose I slowly spin a ball so that it spins at a constant rate of $(1/8) \frac{rotation}{sec}$ around the axis $\hat{k} = \frac{1}{\sqrt{3}}(-\hat{x} - \hat{y} + \hat{z})$. Further suppose my ball has radius .25ft and that my ball's spin is such that the direction $\hat{i} = \frac{1}{\sqrt{2}}(-\hat{x} - \hat{z})$ rotates towards $\hat{j} = \hat{k} \times \hat{i}$. (a). Show \hat{i} , \hat{j} and \hat{k} are pairwise orthogonal and unit length.

(b) What is the position of a point that starts at $.25\hat{i}$ after 9seconds in the \hat{x} , \hat{y} , \hat{z} coordinates .

Taylor

Let $P_n(x)$ be the nth Taylor polynomial at x = 0 for $f(x) = \frac{1}{2-x}$.

- 1. Find *n* large enough so that $|f(.5) P_n(.5)| < .001$. Justify you answer.
- 2. Find the largest number r such that for -r < x < r it true that $\lim_{n\to\infty} |f(x) P_n(x)| = 0$. Justify you answer.
- 3. What is Taylor series for f(x) centered around x = 0.
- 4. For which values of x (if any) does f(x) equal the power series in part 3 and why.

Chapter 6: a theory example

Justify: $\vec{F} = -\nabla V$ implies that \vec{F} is conservative.

Show if \vec{v} is in the same plane as \vec{u} and \vec{w} then the triple product of \vec{v} , \vec{u} , and \vec{w} is zero.