LECTURE OUTLINE
 Functions of Complex Numbers

Professor Leibon

Math 15

Nov. 5, 2004

Goal

Analytic Functions

Differential Equations

Hey!!!!

Do you know the binomial theorem? (Pascal's triangle?)

Theorem:

$$
(x+y)^{n}=\sum_{m=0}^{n} \frac{n!}{m!(n-m)!} x^{m} y^{n-m}
$$

A Function of a Complex Parameter

Due to the triangle inequality $|z+w| \leq|z|+|w|$, power series make good sense when plug in complex numbers. In fact, functions that have power series behave much better when we use complex numbers.

For Example: Tell me the real reason why the radius of convergence of the power series expression for $\frac{1}{1+x^{2}}$ centered at $a=1$ is $\sqrt{2}$.

A Function of a complex Parameter

A complex valued function f is analytic with domain an open set U if f has a power series expansion in some disk about each point of U.

Example 1: Let $e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}$. Verify $e^{z+w}=e^{z} e^{w}$ and that $e^{x+i y}=e^{x}(\cos (y)+i \sin (y))$.

Example 2

Let $\cos (z)=\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n}}{(2 n)!}$. Verify $\cos (z)=\frac{e^{i z}+e^{-i z}}{2}$
and $\cos (z)=\cosh (y) \cos (x)-i \sinh (y) \sin (x)$.

By definition: $\cosh (y)=\frac{e^{y}+e^{-y}}{2}$ and
$\sinh (y)=\frac{e^{y}-e^{-y}}{2}$

A Function of a complex Parameter

Given an analytic function we can differentiate and integrate via

$$
\begin{gathered}
\frac{d f}{d z}=\sum_{n=0}^{\infty} n c_{n}(z-a)^{n-1} \\
\int f d z=\sum_{n=0}^{\infty} \frac{c_{n}}{n+1}(z-a)^{n+1}+C
\end{gathered}
$$

A Differential Equations

If f satisfies

$$
\sum_{i=0}^{N} a_{n}(z) \frac{d^{n} f}{d z^{n}}=0
$$

then we say that f is a solution to this differential equation. An equation in the above special form is called a homogeneous ordinary linear differential equation, a HOLDE.

When we try to solve a HOLDE, we must specify initial conditions, namely $f(0)=a_{0}, \ldots, \frac{d^{N} f}{d z^{N-1}}(0)=a_{N-1}$

Example 3

Solve

$$
\begin{gathered}
\frac{d f}{d z}-f=0 \\
f(0)=a_{0}=1
\end{gathered}
$$

Solve using power series.

Example 4

Solve

$$
\begin{gathered}
\frac{d^{2} f}{d z^{2}}-f=0 \\
f(0)=a_{0}=1 \\
\frac{d f}{d z}(0)=a_{1}=i
\end{gathered}
$$

Example 5 (Bessel's Equation)

Solve

$$
\begin{gathered}
z^{2} \frac{d^{2} f}{d z^{2}}+z \frac{d f}{d z}+z^{2} f=0 \\
f(0)=a_{0}=1 \\
\frac{d f}{d z}(0)=a_{1}=0
\end{gathered}
$$

What is the radius of convergence of the power series you find?

