LECTURE OUTLINE
 Complex Numbers

Professor Leibon

Math 15

Nov. 3, 2004

Goals

Introduce Complex Numbers
Geometry of Complex Numbers

Polar Form

We can write a complex number z in cartesian or polar form

$$
z=x+y i=r(\cos (\theta)+i \sin (\theta)) \equiv r e^{i \theta}
$$

and we say $\arg (z)=\theta$ is z 's argument, $|z|=r$ is z 's norm, $x=\operatorname{Re}(z)$ is z 's real part, and $y=\operatorname{Im}(z)$ is z 's imaginary part,

Find $z=\frac{5 \sqrt{3}}{2}+i \frac{5}{2}$ norm, argument, real part, imaginary part, and express z in polar form.

Addition

Let $z=x_{1}+y_{1} i$ and $w=x_{2}+y_{2} i$. Then
$z+w=\left(x_{1}+x_{2}\right)+\left(y_{1}+y_{2}\right) i$, is simply vector addition.

Add $z=\frac{5 \sqrt{3}}{2}+\frac{5}{2} i$ to $w=1+i$.

Multiplication

Let $z=r_{1} e^{i \theta_{1}}$ and $w=r_{2} e^{i \theta_{2}}$. Then $z w=\left(r_{1} r_{2}\right) e^{i\left(\theta_{1}+\theta_{2}\right)}$. Check that if we express this in cartesian form that we are simply "FOILing".

Square $z=\frac{5 \sqrt{3}}{2}+\frac{5}{2} i$ and describe the norm and argument of the square.

Multiply $z=\frac{5 \sqrt{3}}{2}+\frac{5}{2} i$ and $w=1+i$.

Powers

Let $z=r e^{i \theta}$ and note $z^{n}=r^{n} e^{i n \theta}$. This tells us how to take roots, namely

$$
(z)^{\frac{1}{n}}=r^{\frac{1}{n}} e^{i\left(\frac{\theta+k 2 \pi}{n}\right)}
$$

for any k from 0 to $n-1$.

Find the square, cube, 4th and 5th roots of 1.
Graph them. (These are called the roots of unity.)

The Inverse

Let $z=x+y i=r e^{i \theta}$ be a non-zero complex number, then z 's inverse is

$$
\frac{1}{z}=\frac{x-y i}{x^{2}+y^{2}}=\frac{1}{r} e^{-i \theta}
$$

and we say $\bar{z}=x-y i$ is z 's complex conjugate, and note $z^{-1}=\frac{\bar{z}}{|z|^{2}}$.

Find the inverse of $z=\frac{5 \sqrt{3}}{2}+i \frac{5}{2}$ and express it is polar and cartesian form.

Examples

1. Express $1+\frac{2}{1-i}$ in the form $a+b i$.
2. Let $z=x+y i$ and find the real and imaginary parts of

$$
\frac{z+1}{3 z-2}
$$

3. Simplify $(1-i)^{5}$.
