LECTURE OUTLINE Potential

Professor Leibon

Math 15

Nov. 1, 2004

The Fundamental Theorem of Line Integrals

Potentials

A force is called *conservative* if the work done by \vec{F} as an object traverses a curve γ depends on only on γ 's end points.

Those Caveats: : Suppose \vec{F} is continuous in some open set U such that every pair of points in the set can be connected by a piecewise differentiable continuous path contained in the set. Call such a path *reasonable*. \vec{F} is conservative if given any pair reasonable paths $\gamma_1([a_1, b_1])$ and $\gamma_2([a_2, b_2])$ that satisfy $\gamma_1(a_1) = \gamma_2(a_2)$ and $\gamma_1(b_1) = \gamma_2(b_2)$ we have that $W_{\vec{F}}(\gamma_1) = W_{\vec{F}}(\gamma_2)$.

The Fundamental Theorem of Line Integrals

Theorem: \vec{F} is conservative if and only if $\vec{F} = -\nabla \varphi$.

We call $-\varphi$ the force's *potential*.

Here the set where $-\nabla \varphi$ is continuously differentiable is that open set U from the

previous caveat.

The Line Integral Theorem's Proof

Suppose $\vec{F} = -\nabla \varphi$ and $\gamma([a, b])$ is a reasonable path with $\gamma(a) = \vec{A}$ and $\gamma(b) = \vec{B}$. We need to show $W_{\vec{F}}(\gamma)$ depends only on \vec{A} and \vec{B} . Well...

$$W_{\vec{F}}(\gamma) = \int_{\gamma} \vec{F} \cdot d\vec{r} = \int_{a}^{b} -\nabla\varphi \cdot \frac{d\gamma}{dt} dt$$

$$= -\int_{a}^{b} \frac{d\varphi(\gamma(t))}{dt} dt = -(\varphi(\gamma(b)) - \varphi(\gamma(a))) = \varphi(\vec{A}) - \varphi(\vec{B}).$$

Suppose \vec{F} is conservative, and suppose γ is a reasonable path from \vec{A} (a fixed point) to \vec{r} . We will check in class that $\varphi(\vec{r}) = -\int_{\gamma} \vec{F} \cdot dt$ is a function which satisfies $\vec{F} = -\nabla \varphi$. An Example of a Potential

Find the force associated to the gravitational potential

$$\varphi = -\frac{mMG}{r}$$

Suppose $r = r_e + h$ and $M = m_e$, and m is your mass. Find c_0 and c_1 in $\varphi(h) \approx c_0 + c_1 h$.

When is there a potential?

Is $\vec{F} = y\hat{i} + y\hat{j} + z^2\hat{k}$ conservative? If so, then find its potential.

Is $\vec{F} = 2x \cos(e^y + x^2)\hat{i} + e^y \cos(e^y + x^2)\hat{j} + 5\hat{k}$ conservative? If so, then find its potential.

Conservation of Energy

We know that our total force as we traverse $\gamma(t)$ satisfies $KE + PE(\gamma(t)) = Constant$. (Suppressed in this is the fact that $PE(\gamma(t))$ may depend on γ .) We have just seen that if our total force is conservative, then

$$KE + \varphi(\vec{r}) = Constant,$$

hence this equation has nothing to do with our choice of γ .

Suppose M = 1000, m = 1, and G = 1, and that we are acted on by gravity with an initial speed 10. Suppose we started at r = 100 and find our selves at r = 50. What is our current speed?