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Goal

Driven Damped Harmonic Motion

Phase Portraits

Classifying solutions to
d2f

dt2
+ γ df

dt
+ cf
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Driven Motion

We have been exploring how to solve

∆f = D2f + p(z)Df + q(z)f = 0.

Now we try and solve the inhomogeneous version of this
equation

∆f = G

for some fixed function G. The key is the following:

Main Theorem: Suppose ∆fp = G, then every solution to
∆f = G is in the form fp + fh where fh is a solution to
∆fh = 0.
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Example

Find a general solution to

D2f + 3Df + 4f = e−2t

One could use the power series methods to find these solu-

tions, but we will be learning the "guessing method", page

456 1-5 and 459 1-5.
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Solutions to d2f

dt2
+ γ df

dt
+ cf = 0.

c

c=   /4γ 2

γ
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The Magenta Parabola

Find a two solutions to d2f

dt2
+ γ df

dt
+ γ2

4
f = 0. This is called

the Critically Damped case.

The famous guessing method: If at first you don’t succeed,
then multiply by tk and try try again.
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Resonance

Find a general solution to

D2f + γDf + cf = α sin(ωt)

Suppose the system is initially at rest and the forcing force

is applied. Describe the system’s behavior. What does the

system look like for large time?
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