LECTURE OUTLINE
 Classifying the Solutions

Professor Leibon

Math 15

Nov. 19, 2004

Goal

Driven Damped Harmonic Motion

Phase Portraits

Classifying solutions to

$$
\frac{d^{2} f}{d t^{2}}+\gamma \frac{d f}{d t}+c f
$$

Driven Motion

We have been exploring how to solve

$$
\Delta f=D^{2} f+p(z) D f+q(z) f=0 .
$$

Now we try and solve the inhomogeneous version of this equation

$$
\Delta f=G
$$

for some fixed function G. The key is the following:
Main Theorem: Suppose $\Delta f_{p}=G$, then every solution to $\Delta f=G$ is in the form $f_{p}+f_{h}$ where f_{h} is a solution to $\Delta f_{h}=0$.

Example

Find a general solution to

$$
D^{2} f+3 D f+4 f=e^{-2 t}
$$

One could use the power series methods to find these solutions, but we will be learning the "guessing method", page 456 1-5 and 459 1-5.

Solutions to $\frac{d^{2} f}{d t^{2}}+\gamma \frac{d f}{d t}+c f=0$.

The Magenta Parabola

Find a two solutions to $\frac{d^{2} f}{d t^{2}}+\gamma \frac{d f}{d t}+\frac{\gamma^{2}}{4} f=0$. This is called the Critically Damped case.

The famous guessing method: If at first you don't succeed, then multiply by t^{k} and try try again.

Resonance

Find a general solution to

$$
D^{2} f+\gamma D f+c f=\alpha \sin (\omega t)
$$

Suppose the system is initially at rest and the forcing force is applied. Describe the system's behavior. What does the system look like for large time?

