LECTURE OUTLINE
 Driven Harmonic Motion

Professor Leibon

Math 15

Nov. 17, 2004

Goal

Driven Harmonic Motion IHOLDES

Last Time

Let $\lambda_{ \pm}=\frac{-\gamma \pm \sqrt{\gamma^{2}-4 c}}{2}$. We have used the power series and factoring methods to find that $e^{\lambda_{ \pm} z}$ are solutions to

$$
\Delta f=D^{2} f+\gamma D f+c f=\left(D-\lambda_{+}\right)\left(D-\lambda_{-}\right) f=0,
$$

and we get our needed pair of solutions provided
$\gamma^{2}-4 c \neq 0$. (Notation: $\gamma=\frac{\beta}{m}>0$ and $c=\frac{k}{m}=\omega^{2}>0$.)
We are interested in solving the intitial value problem $f(0)=A$ and $D f(0)=B$ for real constant A and B. Since we are good at solving linear equations, we simply use our above solutions to find two distinct real solutions.

The $\gamma^{2}-4 c \neq 0$ Solutions

Case 1: If $\gamma^{2}>4 c$, then $e^{\lambda_{ \pm} t}$ is real and our real solutions are in the form $f(t)=c_{0} e^{\lambda_{+} t}+d_{0} e^{\lambda_{-} t}$.

Case 2: $\gamma^{2}<4 c$, we have the two real solutions

$$
\begin{gathered}
\frac{1}{2}\left(e^{\lambda_{+} t}+e^{\lambda-t}\right)=\operatorname{Re}\left(e^{\lambda_{+} t}\right)=e^{\frac{-\gamma}{2}} \cos \left(t \frac{\sqrt{4 c-\gamma^{2}}}{2}\right) \\
\frac{-i}{2}\left(e^{\lambda+t}-e^{\lambda-t}\right)=\operatorname{Im}\left(e^{\lambda+t}\right)=e^{\frac{-\gamma}{2}} \sin \left(t \frac{\sqrt{4 c-\gamma^{2}}}{2}\right),
\end{gathered}
$$

and all our real solutions are in the form

$$
f(t)=c_{0} e^{\frac{-\gamma}{2}} \cos \left(t \frac{\sqrt{4 c-\gamma^{2}}}{2}\right)+d_{0} e^{\frac{-\gamma}{2}} \cos \left(t \frac{\sqrt{4 c-\gamma^{2}}}{2}\right) .
$$

Examples

Solve

$$
D^{2} f+3 D f+4 f=0
$$

fpr $f(0)=1$ and $D f(0)=2$.
Solve

$$
D^{2} f+D f+4 f=0
$$

for $f(0)=0$ and $D f(0)=1$.

Driven Motion

We have been exploring how to solve

$$
\Delta f=D^{2} f+p(z) D f+q(z) f=0
$$

Now we try and solve the inhomogenous version of this equation

$$
\Delta f=G
$$

for some fixed function G. The key is the following:
Main Theorem: Suppose $\Delta f_{p}=G$, then every solution to $\Delta f=G$ is in the form $f_{p}+f_{h}$ where f_{h} is a solution to $\Delta f_{h}=0$.

