LECTURE OUTLINE
 Solving Differential Equations By Factoring

Professor Leibon

Math 15
Nov. 15, 2004

Goal

Review: Power Series Method Differential Operators
 Factoring Differential Equations

Summary of Last Night

Theorem: Given function $p(z)$ and $q(z)$ that can be described by power sries that converges for $\left|z-z_{0}\right| \leq R$ and the equation

$$
\frac{d^{2} f}{d z^{2}}+p(z) \frac{d f}{d z}+q(z) f=0,
$$

the power series method will always produce a solution to this equation that can also described a as power series that converges for $\left|z-z_{0}\right| \leq R$ subject any choice of initial conditions $f\left(z_{0}\right)=A$ and $\frac{d f}{d x}\left(z_{0}\right)=B$.

Furthermore any solution to such an equation is uniquely determined by its initial conditions $f\left(z_{0}\right)=A$ and $\frac{d f}{d x}\left(z_{0}\right)=B$.

Other Views

Let $D=\frac{d}{d z}$ (the act of taking a derivative). D^{n} means perform this action n times. Then our previous equation can be written as

$$
D^{2} f+p(z) D f+q(z) f=0 .
$$

As such we are viewing our differential equation as something we do. $\Delta=D^{2} f+p(z) D f+q(z) f$ an example of an linear differential operator.

Example 4

Using the $\Delta f=D^{2} f+\omega^{2}$, solve the equation

$$
\begin{gathered}
\Delta f=0 \\
f(0)=A \\
D f(0)=B
\end{gathered}
$$

Example 5

Let $\Delta=D^{2} f+\omega^{2}$. Factor and find two solutions
to

$$
\Delta f=0 .
$$

Big Theorem

Theorem: If $\Delta f=D^{2} f+p(z) D f+q(z) f$ and c and d are any constants, then $\Delta(c g+d h)=c \Delta g+d \Delta h$.

Corollary: If $\Delta f=D^{2} f+p(z) D f+q(z) f$ and g and h solve the equation $\Delta f=0$, then $c g+d h$ also solves this equation.

Example 6

Let $\Delta=D^{2}+\omega^{2}$. Solve

$$
\begin{aligned}
\Delta f & =0 \\
f(0) & =A \\
\frac{d f}{d z}(0) & =B
\end{aligned}
$$

in two ways.

Using this Corollary

Key Fact: To solve the equation $\Delta f=0$ for any initial conditions $f(0)=A$ and $D f(0)=B$ we can simply find 2 solutions $g(z)$ and $h(z)$ such that for some choice of c and d we can solve $c f(0)+d h(0)=A$ and $c D f(0)+d D h(0)=B$.

Example 7: Damped Harmonic Motion

Try to find all solutions to

$$
\frac{d^{2} f}{d z^{2}}+\gamma \frac{d f}{d z}+c f=0
$$

with $\gamma>0$ and $c>0$.

Critically Damped Harmonic Motion

Use the power series method to find a solution to

$$
\begin{gathered}
\frac{d^{2} f}{d z^{2}}+2 \omega \frac{d f}{d z}+\omega^{2} f=0 \\
f(0)=0 \\
\frac{d f}{d z}(0)=1
\end{gathered}
$$

Using the key fact, find the solution to this equation.

Example 7 (Bessel's Equation)

Try to solve

$$
\begin{gathered}
z^{2} \frac{d^{2} f}{d z^{2}}+z \frac{d f}{d z}+z^{2} f=0 \\
f(0)=A \\
\frac{d f}{d z}(0)=B
\end{gathered}
$$

What happens?

