LECTURE OUTLINE
 Linear Differential Equations

Professor Leibon

Math 15
Nov. 12, 2004

Goal

Differential Equations

 The Power Series Method
A Differential Equations

If f satisfies

$$
\sum_{n=0}^{N} a_{n}(z) \frac{d^{n} f}{d z^{n}}=0,
$$

then we say that f is a solution to this differential equation. An equation in the above special form is called a homogeneous ordinary linear differential equation, a HOLDE. N is called this HOLDE's order.

When we try to solve a HOLDE, we must specify initial conditions, namely $f(0)=b_{0}, \ldots, \frac{d^{N-1} f}{d z^{N-1}}(0)=b_{N-1}$

Example 1

Express the following as a HOLDE and solve it using power series:

$$
\begin{aligned}
& \frac{d f}{d z}=2 f \\
& f(0)=1
\end{aligned}
$$

Do the same for

$$
\begin{aligned}
& \frac{d f}{d z}=c f \\
& f(0)=b_{0} .
\end{aligned}
$$

Example 2

Express the following as a HOLDE and solve it using power series (it is SHM):

$$
\begin{gathered}
\frac{d^{2} f}{d z^{2}}=-\omega^{2} f \\
f(0)=b_{0} \\
\frac{d f}{d z}(0)=b_{1}
\end{gathered}
$$

