
6. Suppose we have an ideal pendulum of length 1 meter and mass 1. From
rest we impart our pendulum with a speed of

√
g m

sec . (Recall two forces act on
such an ideal pendulum, a tension in the −r̂ direction and the force of gravity
acting in the −ĵ direction of magnitude g m

sec2 . Assume this g and the g in the
above

√
g are the same.)

a. Let θ be the angle our pendulum makes with −ĵ, and find the
potential energy of our pendulum for each θ,

A solution using polar stuff: (We do not need to use any polar stuff
here, I just like it!) Notice since we are on the unit circle ~γ(t) = r̂(t − π

2
) for t

from 0 to θ parameterizes the needed circular arc. We have that

PotntialEnergy(θ) ≡ PE(θ) = −Work(θ) = −
∫ θ

0

~F · d~γ

dt
dt

where the total force is described in the problem as ~F = (−g~j − (Ten)r̂) and
d~γ
dt (t) = θ̂(t − π

2
). So PE(θ) can be computed as

−
∫ θ

0

(−g~j−(Ten)r̂)·θ̂(t−π

2
)dt = g

∫ θ

0

cos(t−π

2
)dt = g

∫ θ

0

sin(t)dt = g(1−cos(θ))

Note: One could also have observed that only the gravitation force con-
tributes to the potential energy in this situation, and recalled that the gravita-
tion potential is mgh = (1)(g)(1 − cos(θ)).

b. Find the pendulum’s speed when it is at an angle θ.

Solution: ~F is the total force acting on the system, hence energy is con-
served. In other words, since the mass is 1

PE(θ) +
1

2
|~v(θ)|2 = Constant ≡ C

By plugging t = 0, we find C = 0 + 1

2
|√g|2 = g

2
. Moving the potential energy

term to the right hand side of the equation, we now have

1

2
|~v(θ)|2 =

g

2
− PE(θ) =

g

2
− g(1 − cos(t)) = g(−1

2
+ cos(θ)).

So our speed when the pendulum is at an angle θ is
√

g(−1 + 2 cos(θ)).
Note: We need (− 1

2
+cos(θ)) ≥ 0 for this square root to make sense. Hence,

any θ that fails to satisfy this inequality is physically impossible and our pen-
dulum will fail to have enough “umph” to reach such a non-physical angle.

c. Does our pendulum make a complete circle? (Justify your answer
carefully.)

Solution: If 1

2
|~v(θ)|2 = 0, then we will have stoped. From part (b), this is

equivalent to (− 1

2
+ cos(θ)) = 0 having a solution. Recalling that cos(± π

3
) = 1

2
,

we see that our pendulum stops at when θ = π
3

and so our pendulum will fail

to make a full revolution.
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7. Suppose we choose our units so that the force of gravity exerted by a
massive object located at the origin of our three-dimensional axes on a small
object of mass 1 located a distance r from the origin has magnitude 2

9

1

r2 and
acts directly towards the origin. I tell you that this is a conservative force.

(a.1) Parameterize a particle that travels from (1, 0, 0) to (1/2, 0, 0)
in a straight line and at a constant speed.

Solution: Well ~γ(t) = (1− t
2
, 0, 0) goes from (1, 0, 0) to (1/2, 0, 0) as t ranges

from 0 to 1.
(a.2) Use your parameterization to compute the work done by grav-
ity in going from (1, 0, 0) to (1/2, 0, 0).

Solution: r(t) =
√

(1 − t
2
)2 + 02 + 02 = 1 − t

2
for t in [0, 1], so the force

due to gravity is

~F = −2

9

1

r2
î = −2

9

(

1 − t

2

)

−2

î.

Now the work is
∫ 1

0
~F · d~γ

dt dt with d~γ
dt = − 1

2
î, hence the work done by ~F equals

∫

1

0

1

9
(1 − t

2
)−2dt =

4

9

∫

1

0

(2 − t)−2dt =
4

9
(2 − t)−1

∣

∣

∣

∣

1

0

=
4

9
− 2

9
=

2

9
.

(b) What is the work done in going from (1, 0, 0) to (1/2, 0, 0) along

~r(t) = ((1 − t)2/3, 0, 0) for 0 ≤ t ≤ 1 −
√

2

4
?

Solution: ~r(t) is another parameterization of the line from (1, 0, 0) to
(1/2, 0, 0), and the work is parameterization independent, so the work equals 2

9
.

Note: Since I am told that the force is conservative, I know that the work
is in fact entirely independent of the path.

(c) Is it possible that the force of gravity is the only force acting on
your parameterized curve from part (a) or the curve ~r(t) from part
(b)? Justify your answers carefully.

Solution: We must check whether either path is consistent with our equa-
tion of motion ~F = m~a = ~a (since our mass is assumed 1). Well in part (a.2)

we found ~F = − 2

9
(1 − t

2
)−2î as we move along our line from (a.1). But the

acceleration
d2~γ

dt2
= 0 6= −2

9
(1 − t

2
)−2 î,

so ~γ(t) must be acted on by forces other than gravity to experience this

motion. Using the path ~r(t) = ((1 − t)2/3, 0, 0), we see that ~F = − 2

9

1

r2 î =

− 2

9
(1 − t)−4/3î and that our acceleration equals

d2~r

dt2
= (

d2

dt2
(1 − t)2/3 )̂i = (

d

dt
(−2/3)(1− t)−1/3)̂i = −2

9
(1 − t)−4/3 î.

So this path could indeed be describing the trajectory of particle under the
influence of gravity alone.
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