POLAR COORDINATE PROBLEMS

Math 15
Oct. 20, 2004

Goal

Polar Coordinate Review Polar Coordinate Problems

Polar Coordinates

We define polar coordinates via

$$
(r, \theta)_{P}=(r \cos (\theta), r \sin (\theta))
$$

We can find a polar coordinate determining (x, y) via

$$
(x, y)=\left(\sqrt{x^{2}+y^{2}}, \arctan \left(\frac{y}{x}\right)\right)_{P} .
$$

Polar Coordinates: Vectors

When thinking in terms of polar coordinates, we use \hat{r} to describe position

$$
\vec{r}=r \hat{r}(\theta)=r(\cos (\theta) \hat{i}+\sin (\theta) \hat{j})
$$

and use \hat{r} 's perpendicular companion

$$
\hat{\theta}=-\sin (\theta) \hat{i}+\cos (\theta) \hat{j}
$$

to describe vectors at $(r, \theta)_{P}$.

Derivatives in Polar Coordinates

$$
\begin{gathered}
\frac{d \hat{r}}{d t}=\dot{\theta} \hat{\theta} \\
\frac{d \hat{\theta}}{d t}=-\dot{\theta} \hat{r} \\
\frac{d \vec{r}}{d t}=\dot{r} \hat{r}+r \dot{\theta} \hat{\theta} \\
\frac{d^{2} \vec{r}}{d t^{2}}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \hat{r}+(2 \dot{r} \dot{\theta}+r \ddot{\theta}) \hat{\theta}
\end{gathered}
$$

Problem 1

A particle travels on a circle of constant radius $5 m$ from C to A around B. Suppose the component of its acceleration vector that points in the tangential direction has magnitude equal to t^{3}, and that our particle begins its journey with a velocity of 0 meters per second.
(a) Express the position vector in Cartesian and Polar coordinates using B as the origin.
(b) Is there an acceleration in the \hat{r} direction? If so find it.

Problem 2

Imagine a particle travels around a circle of changing radius with a constant speed in the $\hat{\theta}$ direction of ω. Suppose it starts at \hat{i} and that the radius of the circle is changing with time as $r(t)=1+t^{2}$. (Hint: $\frac{d \arctan (x)}{d x}=\frac{1}{1+x^{2}}$.)
(a) Express $\vec{r}(t)$ in Cartesian coordinates.
(b) Find $r(\theta)$, the distance from the origin as a function of angle.
(c) How large must ω be to insure that our particle will eventually make a full revolution?

