POLAR COORDINATE PROBLEMS

Math 15

Oct. 20, 2004

Polar Coordinate Review Polar Coordinate Problems

Polar Coordinates

We define polar coordinates via

$$(r,\theta)_P = (r\cos(\theta), r\sin(\theta)).$$

We can find a polar coordinate determining (x, y) via

$$(x,y) = \left(\sqrt{x^2 + y^2}, \arctan\left(\frac{y}{x}\right)\right)_P$$

Polar Coordinates: Vectors

When thinking in terms of polar coordinates, we use \hat{r} to describe position

$$\vec{r} = r\hat{r}(\theta) = r(\cos(\theta)\hat{i} + \sin(\theta)\hat{j}),$$

and use \hat{r} 's perpendicular companion

$$\hat{\theta} = -\sin(\theta)\hat{i} + \cos(\theta)\hat{j}$$

to describe vectors at $(r, \theta)_P$.

Derivatives in Polar Coordinates

$$\frac{d\hat{r}}{dt} = \dot{\theta}\hat{\theta}$$
$$\frac{d\hat{\theta}}{dt} = -\dot{\theta}\hat{r}$$

$$\frac{d\vec{r}}{dt} = \dot{r}\hat{r} + r\dot{\theta}\hat{\theta}$$

$$\frac{d^2 \vec{r}}{dt^2} = (\ddot{r} - r\dot{\theta}^2)\hat{r} + (2\dot{r}\dot{\theta} + r\ddot{\theta})\hat{\theta}$$

Problem 1

A particle travels on a circle of constant radius 5m from *C* to *A* around *B*. Suppose the component of its acceleration vector that points in the tangential direction has magnitude equal to t^3 , and that our particle begins its journey with a velocity of 0 meters per second.

(a) Express the position vector in Cartesian and Polar coordinates using *B* as the origin. (b) Is there an acceleration in the \hat{r} direction? If so find it.

Problem 2

Imagine a particle travels around a circle of changing radius with a constant speed in the $\hat{\theta}$ direction of ω . Suppose it starts at \hat{i} and that the radius of the circle is changing with time as $r(t) = 1 + t^2$. (Hint: $\frac{d \arctan(x)}{dx} = \frac{1}{1+x^2}$.)

(a) Express $\vec{r}(t)$ in Cartesian coordinates.

(b) Find $r(\theta)$, the distance from the origin as a function of angle.

(c) How large must ω be to insure that our particle will eventually make a full revolution?

