POLAR COORDINATE PROBLEMS

Math 15
Sep 27, 2004

Goal

Polar Coordinate Review Polar Coordinate Problems

Polar Coordinates

We define polar coordinates via

$$
(r, \theta)_{P}=(r \cos (\theta), r \sin (\theta))
$$

We can find a polar coordinate determining (x, y) via

$$
(x, y)=\left(\sqrt{x^{2}+y^{2}}, \arctan \left(\frac{y}{x}\right)\right)_{P} .
$$

Polar Coordinates: Vectors

When thinking in terms of polar coordinates, we use \hat{r} to describe position

$$
\vec{r}=r \hat{r}(\theta)=r(\cos (\theta) \hat{i}+\sin (\theta) \hat{j})
$$

and use \hat{r} 's perpendicular companion

$$
\hat{\theta}=-\sin (\theta) \hat{i}+\cos (\theta) \hat{j}
$$

to describe vectors at $(r, \theta)_{P}$.

Derivatives in Polar Coordinates

$$
\begin{gathered}
\frac{d \hat{r}}{d t}=\dot{\theta} \hat{\theta} \\
\frac{d \hat{\theta}}{d t}=-\dot{\theta} \hat{r} \\
\frac{d \vec{r}}{d t}=\dot{r} \hat{r}+r \dot{\theta} \hat{\theta} \\
\frac{d^{2} \vec{r}}{d t^{2}}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \hat{r}+(2 \dot{r} \dot{\theta}+r \ddot{\theta}) \hat{\theta}
\end{gathered}
$$

Problem 1

A particle travels on a circle of constant radius $5 m$ from C to A around B. Suppose the component of its acceleration vector that points in the tangential direction has magnitude equal to t^{3}, and that our particle begins its journey with a velocity of 0 meters per second.
(a) Express the position vector in Cartesian and Polar coordinates using B as the origin.
(b) Is there an acceleration in the \hat{r} direction? If so find it.

Problem 2

Imagine a particle travels around a circle of changing radius with a constant speed in the $\hat{\theta}$ direction of ω. Suppose it starts at \hat{i} and that the radius of the circle is changing with time as $r(t)=1+t^{2}$. (Hint: $\frac{d \arctan (x)}{d x}=\frac{1}{1+x^{2}}$.)
(a) Express $\vec{r}(t)$ in Cartesian coordinates.
(b) Find $r(\theta)$, the distance from the origin as a function of angle.
(c) How large must ω be to insure that our particle will eventually make a full revolution?

Problem 3. Part A

The Heavy Baseball (No rotational ideas involved) Suppose I'm standing on the pitching mound (in a vacuum) and throw a really heavy baseball of weight 1 kg baseball towards home plate. Think of the center of home plate as the origin. Call the straight up direction \hat{z}, the direction toward the pitcher from home plate \hat{x}, and let $\hat{y}=\hat{z} \times \hat{x}$. Suppose a pitch leaves my hand from $90 \hat{x}+\hat{y}+5 \hat{z} f t$ (the ball's initial center of mass) with initial velocity $-120 \hat{x}-\frac{4}{3} \hat{y}+8 \hat{z} \frac{f t}{s e c}$.
(a) Am I a right handed or left handed pitcher? Why?
(b) Find the equation of motion of this ball's center of mass, $\vec{c}(t)$. (Assume the only force acting on the system is $\left.-g \hat{z}=-32 \hat{z} \frac{f t}{s e c^{2}}\right)$.
(c) Do you think my pitch ends up in the strike zone, why?

Problem 3. Part B

Suppose I throw the baseball from Part A so that it spins at a constant rate of $6 \frac{\text { rotations }}{\text { sec }}$ around the axis $\hat{k}=\frac{1}{\sqrt{3}}(-\hat{x}-\hat{y}+\hat{z})$. Further suppose my baseball has radius $.25 f t$ and that my ball's spin is such that the direction $\hat{i}=\frac{1}{\sqrt{2}}(-\hat{x}-\hat{z})$ rotates towards $\hat{j}=\hat{k} \times \hat{i}$.
(d) Express a formula for how the point initially at $.25 \hat{i}$ changes with time in the $\hat{r}, \hat{\theta}$, and \hat{k} coordinates relative to the ball's center of mass.
(e) Express a formula for how the point initially at $.25 \hat{i}$ changes with time in the \hat{i}, \hat{j}, and \hat{k} coordinates relative to the ball's center of mass.
(f) Describe in the \hat{x}, \hat{y}, and \hat{z} coordinates the actual position of the point on the ball that started at $\vec{c}(0)+.25 \hat{i}$.
(g) (Extra Credit) Suppose I actually throw this ball (in other words not in a vacuum).

Explain how you feel the ball's path might deviate from the trajectory described in question 2. Why?

