Some suggested Practice problems for the second Midterm.

1. Rewrite the triple integral $\int_{0}^{1} \int_{0}^{x} \int_{0}^{3 y} f(x, y, z) d z d y d x$ as $\int_{a}^{b} \int_{\phi_{1}(y)}^{\phi_{2}(y)} \int_{\gamma_{1}(y, z)}^{\gamma_{2}(y, z)} f(x, y, z) d x d z d y$.
2. Compute the integral $\iiint_{W} \frac{e^{x^{2}+y^{2}+z^{2}}}{\sqrt{x^{2}+y^{2}+z^{2}}} d V$ where W is the solid bounded by by the spheres $x^{2}+y^{2}+z^{2}=1^{2}$ and $x^{2}+y^{2}+z^{2}=3^{2}$ and located above the plane $z=0$.
3. Find the center of mass of the cylinder $\left\{(x, y, z), x^{2}+y^{2} \leq 1 ; 0 \leq z \leq 1\right\}$ if the density is $\rho(x, y, z)=x^{2}+y^{2}+z$.
4. Evaluate the following improper integral

$$
\iint_{D} \frac{1}{\left(x^{2}+y^{2}-4\right)^{\frac{1}{3}}} d x d y
$$

where D is the disk $\left\{x^{2}+y^{2} \leq 4\right\}$
5. Sketch the region of integration and change the order of integration

$$
\int_{0}^{1} \int_{y^{2}}^{2-y} f(x, y) d x d y
$$

6. Evaluate

$$
\iiint_{W} x^{2} d x d y d z
$$

where W is the solid that lies within the cylinder $x^{2}+y^{2}=1$, above the plane $=0$ and below the cone $z^{2}=4 x^{2}+4 y^{2}$.
7. Describe the solid whose volume is given by the integral

$$
\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{6}} \int_{1}^{3} \rho^{2} \sin \phi d \rho d \phi d \theta
$$

and evaluate the integral
8. Show that

$$
4 \pi \leq \iint_{D}\left(x^{2}+y^{2}+1\right) d x d y \leq 20 \pi
$$

where D is the disk of radius 2 centered at the orgin.
9. Calculate the lengths of the following curves:
(a) $\quad r(t)=\cos (4 t) \mathbf{i}+\sin (4 t) \mathbf{j}+4 t \mathbf{k}, \quad 0 \leq t \leq \frac{\pi}{2}$
(b) $\quad r(t)=\cos \left(\frac{t}{2}\right) \mathbf{i}+\sin \left(\frac{t}{2}\right) \mathbf{j}+\frac{t}{2} \mathbf{k}, \quad 0 \leq t \leq 4 \pi$
10. Show that $\mathbf{r}(t)=\left\langle 3 \cos \frac{t}{3}, 3 \sin \frac{t}{3}\right\rangle$ with $t \in[0,6 \pi]$ is a flow curve of the vector field $\mathbf{F}(x, y)=$ $\left\langle\frac{-y}{\sqrt{x^{2}+y^{2}}}, \frac{x}{\sqrt{x^{2}+y^{2}}}\right\rangle$
11. Let $\mathbf{F}(x, y, z)=y z \mathbf{i}+x y e^{z} \mathbf{j}+\sin (x y) \mathbf{k}$ be a vector field. Show that \mathbf{F} can not be the curl of some C^{2}-vector field $\mathbf{G}(x, y, z)$.
12. Investigate whether or not the system

$$
\begin{aligned}
u(x, y, z) & =x+3 x y z \\
v(x, y, z) & =y+x y \\
w(x, y, z) & =5 x+z+6 z^{2}
\end{aligned}
$$

can be solved for x, y, z in terms of u, v, w near the point $(x, y, z)=(0,0,0)$. If it can be solved find $\frac{\partial x}{\partial u}$ at this point.

