1. Let $(x, y)=\min (|x|,|y|)$ be a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Sketch the 1-level, 2-level and 3-level curves of the function f on the coordinate (x, y)-plane. Be sure to indicate the coordinates of the intersection points of the level curves with the coordinate axis.
2. Determine the second order Taylor formula for the function $f(x, y)=\sin \left(x^{2} y\right)$ at the point $\left(x_{0}, y_{0}\right)=(0,0)$.
3. Find the area of the largest rectangle that can be inscribed in the ellipse

$$
\frac{x^{2}}{3^{2}}+\frac{y^{2}}{5^{2}}=1
$$

4. Let $f(x, y, z)=\left(x^{2} y, x+e^{z}\right)$ and $g(x, y)=\left(x+y, y^{2}-1, \ln x\right)$. Compute the derivative of $f \circ g$ at $(1,1)$.
5. Compute the following limit, or explain why the limit does not exist. $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y^{2}}{x^{2}+x y+y^{2}}$
6. Let $\mathbf{r}(t)=\left\langle e^{t}, \cos t, \sin t\right\rangle$ be a curve. Find the vector equation of the line tangent to $\mathbf{r}(t)$ at $\mathbf{r}(\pi)$.
7. Let

$$
f(x, y)=\left(a \frac{x^{2}}{2}-1\right)(y-2)+\frac{y^{2}}{2}-2 y
$$

where a is some nonzero real number.
(a) Find all critical points of f
(b) Use the second derivative test to classify the critical points, if possible. Note that your answer may depend on a.
8. Let $f(x, y)=(x-1)^{2}+y^{2}$ be a function and let $D=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$ be a domain. Find the absolute maximum and the absolute minimum of the function f in the domain D.
9. Let S be the sphere of radius a centered at the origin. Find the vector equation for the tangent plane to the sphere at a point $\left(x_{0}, y_{0}, z_{0}\right)$.
10. Discuss the solvability of

$$
\begin{gathered}
x y z+u+v+w-3=0 \\
x y+u^{2} v-1=0 \\
x u+y v+w^{2}=1
\end{gathered}
$$

for u, v, w in terms of x, y, z near $x=y=z=0, u=v=w=1$.

