Some suggested Practice problems for the Final Exam.

1. Let $f(x, y)=e^{3 x y^{2}}$. Find the second-order Taylor polynomial around the point $(0,1)$. Use this Taylor polynomial to approximate the value of $f(0.1,0.9)$.
2. Let $\mathbf{F}(x, y, z)=-\frac{1}{3} y^{3} \mathbf{i}+\frac{1}{3} x^{3} \mathbf{j}+e^{z^{3}} \mathbf{k}$ be a vector field. Let C be the oriented curve parametrized as $\mathbf{r}(t)=\left\langle\cos t, \sin t, \cos ^{2} t+2 \sin ^{2} t\right\rangle$, where $t \in[0,2 \pi]$. Compute $\int_{C} \mathbf{F} \cdot d \mathbf{S}$. Hint: note that the curve lies on the paraboloid surface $z=x^{2}+2 y^{2}$.
3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a mapping such that $f(u, v)=\left(u^{2}, u v, v+2 u\right)$ and let $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{1}$ be a mapping such that $D g(x, y, z)=\left(x y, \frac{1}{2} x^{2}, z^{2}\right)$. Put $h=g \circ f$ and find $D h(1,2)$.
4. Evaluate the iterated integral $\int_{0}^{1} \int_{y}^{y^{1 / 3}} e^{x^{2}} d x d y$.
5. Let \mathbf{F} be a vector field such that for every path $c:[a, b] \rightarrow \mathbb{R}^{3}$ the integral $\int_{c} \mathbf{F} \cdot d \mathbf{s}$ depends only on the starting point $c(a)$ and on the ending point $c(b)$. Show that $\int_{\mathbf{d}} \mathbf{F} \cdot d \mathbf{s}=0$, for every closed simple path d.
6. Compute $\int_{\mathbf{c}}-y x^{2} \mathrm{dx}+x y^{2} \mathrm{dy}$ where \mathbf{c} is the unit circle oriented in the clockwise direction.
7. Let $F=\left(z^{3} \cos (x z), 2 y z, 2 z \sin (x z)+x z^{2} \cos (x z)+y^{2}\right)$.
(a) Show that F is a conservative vector field.
(b) Compute $\int_{\mathbf{c}} F \cdot d \mathbf{S}$ along the path $\mathbf{c}(t)=\left(\sin (\pi t / 2), 5 t^{3}+2 t^{2}-6 t, e^{t^{2}-t}+t^{6}-t\right)$ with $0 \leq t \leq 1$.
8. Compute $\iint_{S} F \cdot d \mathbf{S}$ where $F=\left(2 x^{2} y, z^{2}-3 x y^{2}, 2 z(x y+1)\right)$ and S is the sphere of radius \mathbf{R} centered at the origin with an outward orientation.
9. Let $f(x, y)=(x-1)^{2}+y^{2}$ be a function and let $D=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$ be a domain. Find the absolute maximum and the absolute minimum of the function f in the domain D.
10. Find the value of

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

in the following cases:
(a)

$$
\mathbf{F}=\left\langle\frac{1}{2} x y^{2}+x^{2} y+\sin \left(x^{2}\right), \frac{1}{2} x^{2} y+\frac{1}{3} x^{3}+e^{y}\right\rangle
$$

and C is the unit square in the (x,y)-plane oriented clockwise.
(b)

$$
\mathbf{F}=\left\langle\frac{1}{2} x y^{2}+x^{2} y, \frac{1}{2} x^{2} y+\frac{1}{3} x^{3}\right\rangle
$$

and C is any curve connecting $(0,0)$ to $(1,1)$.
11. Let $f(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$. Compute $\operatorname{div}(\operatorname{grad} f)$.
12. Use the area formula, $A(D)=\frac{1}{2} \int_{\partial D} x d y-y d x$, to show the area of a disk of radius R is πR^{2}.
13. Compute $\left|\iint_{S} \nabla \times F \cdot d \mathbf{S}\right|$ where $F=\left(y x^{2} \cos (z+\pi), x y^{2} \cos z, x e^{z}\right)$ and S is an oriented surface $z=1-x^{2}-y^{2}$ where $z \geq 0$.
14. Let S be the sphere of radius a centered at the origin. Find the vector equation for the tangent plane to the sphere at a point $\left(x_{0}, y_{0}, z_{0}\right)$.
15. Rewrite the triple integral $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{x^{2}+y^{2}} f(x, y, z) d z d y d x$ as $\int_{a}^{b} \int_{\phi_{1}(y)}^{\phi_{2}(y)} \int_{\gamma_{1}(y, z)}^{\gamma_{2}(y, z)} f(x, y, z) d x d z d y$.

