
CLASS 2, MATH 13, SPRING 2011, 3/30/2011

In today’s class we will quickly review the content of Chapter 13 in the text, which
covers vectors and the geometry of two and three dimensional space. This is meant to be a
refresher, not a detailed exposition of these topics, so do not expect extensive explanation
or examples.

Much of this material will not appear in the first half of the class, but it will appear
repeatedly in the second half.

1. Vectors

A vector can be thought of as an element of Rn. However, we usually represent vectors as
a pointed arrow, which has a tail at the origin and its arrowhead at the point described by
the corresponding element of Rn. Sometimes we permit vectors to start at points besides the
origin. We commonly use either a boldface font, such as v, or the notation ~v to distinguish
vectors from real numbers.

We often write v = 〈v1, . . . , vn〉 to specify the components or coordinates of v. If n = 2, 3,
we may also use the notation v1i + v2j or v1i + v2j + v3k. In this notation, i = 〈1, 0〉 or
〈1, 0, 0〉, etc.

We add and subtract two vectors by adding and subtracting the corresponding compo-
nents. We can multiply a vector by a real number by multiplying each component by the
real number in question. This is sometimes called scalar multiplication. Geometrically,
the sum of two vectors can be thought of as one of the diagonals of the parallelogram
determined by the two vectors.

A very important quantity associated to a vector is its norm or length. This is equal
to the length of the arrow which represents the vector; if v = 〈v1, . . . , vn〉, then the norm,
which is represented as |v| or ||v|| is given by the formula

|v| =
√
v21 + . . .+ v2n.

This can be proven by a straightforward application of the Pythagorean theorem.
If a vector has length 1, we call that vector a unit vector. Such vectors are very important;

for example, when we calculate directional derivatives we use unit vectors. We will see more
places where unit vectors appear in the second half of the class.

Example. A typical calculation you should expect to encounter relatively frequently is to
find a unit vector which points in the same direction as some given vector. For example,
suppose you are given the vector v = 〈1/2, 1/3, 1/4〉. In general, a unit vector which points
in the same direction as v is given by the formula

v

|v|
.

Notice that calculating the length of 〈1/2, 1/3, 1/4〉 is relatively unpleasant. A nice trick
to simplify the calculation of unit vectors is to sometimes multiply or divide by a positive
real number to simplify the form of the coordinates of the vector in question. For example,
here, we can clear all the denominators by multiplying v by 12 to get 12v = 〈6, 4, 3〉. Then
the unit vector which points in the same direction as 12v, which is the same as the unit
vector pointing in the same direction as v, is

1
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1√
61
〈6, 4, 3〉.

This calculation is slightly simpler than calculating the length of v from directly, as you
can see for yourself.

2. The dot product

Given two vectors v = 〈v1, . . . , vn〉,w = 〈w1, . . . , wn〉 in Rn, their dot product, written
v ·w, is defined to be the real number

v ·w = v1w1 + . . .+ vnwn.

One of the main applications of the dot product is that it gives us information about the
angle between two vectors. As a matter of fact, an application of the law of cosines (which
you may or may not remember from high school trigonometry) shows that if the angle
between v,w is θ, then

cos θ =
v ·w
|v||w|

.

In particular, if the dot product of two vectors is zero, then they are perpendicular (orthog-
onal, normal) to each other.

Also notice that the length of a vector has a convenient expression in terms of the dot
product:

|v| =
√
v · v.

The dot product can also be used to calculate the projection of one vector onto another,
but we skip that application. See the text for more details.

3. The cross product

Now suppose v = 〈v1, v2, v3〉,w = 〈w1, w2, w3〉 are two vectors in R3. Their cross product,
v ×w, is defined to be the vector

〈v2w3 − v3w2,−(v1w3 − v3w1), v1w2 − w1v2〉
You can either memorize this direction directly (you do need to know how to calculate cross
products in this class), or use the fact that a cross product can be written as a ‘determinant’:

v ×w = det

 i j k
v1 v2 v3
w1 w2 w3

 =

∣∣∣∣∣∣
i j k
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣ .
We sometimes use two |s to delimit an array of numbers if we want to indicate the determi-
nant of the corresponding matrix. The determinant of a 3× 3 matrix is defined inductively
in terms of the determinants of 2× 2 matrices:

v ×w =

∣∣∣∣ v2 v3
w2 w3

∣∣∣∣ i− ∣∣∣∣ v1 v3
w1 w3

∣∣∣∣ j +

∣∣∣∣ v1 v2
w1 w2

∣∣∣∣k.
Make sure that the sign of the middle term is negative, if you choose to remember cross
products this way. Recall that the determinant of a 2× 2 matrix is given by∣∣∣∣ a b

c d

∣∣∣∣ = ad− bc.
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Example. Calculate the cross product ~v × ~w of ~v = 〈1, 2,−1〉 and ~w = 〈3,−2, 1〉. We
calculate the determinant of the matrix

det

 i j k
1 2 −1
3 −2 1

 = (2 ·1− (−2) · (−1))i− (1 ·1− (−1) ·3)j+(1 · (−2)−2 ·3)k = −4j−8k.

The cross product of two vectors has some useful properties. For example, it is a vector
which is orthogonal to both v and w. We list a few more properties below:

• The cross product is anti-commutative: v ×w = −w × v.
• The cross product of two parallel vectors is 0.
• The magnitude of v×w is equal to |v||w| sin θ, where θ is the angle between v and
w. By trigonometry, this is equal to the area of the parallelogram determined by v
and w.
• There are two possible directions for v×w, since it is orthogonal to both v and w.

The direction is given by what is known as the right hand rule. If we take the all
the fingers in our right hand, except our thumb, and curl them in the direction of
v to w, then the thumb points in the direction of v ×w.

Example. The arrangement of the x, y, and z axes in R3 is setup so that i × j = k.
Another example: suppose we draw v, which is pointing left on a blackboard, and w,
which is pointing down and to the right. Then v×w will be pointing out of the blackboard
(as opposed to in).

Let a,b, c be three vectors in R3. The scalar triple product is real number a · b × c. It
can be expressed as a 3× 3 determinant:

a · b× c =

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ = a1(b2c3 − b3c2)− a2(b1c3 − b3c1) + a3(b1c2 − b2c1).

The geometric interpretation of the scalar triple product is that its absolute value is equal
to the volume of the parallelopiped which is spanned by the three vectors a,b, c. The
textbook has some basic algebraic properties of scalar triple products, which are all proven
via direct calculation.

Example. (For students to answer:) Find the volume of the parallelopiped spanned by
a,b, c = 〈1, 1, 1〉, 〈1, 3, 2〉, 〈2, 1, 4〉.

Compute a 3× 3 determinant:∣∣∣∣∣∣
1 1 1
1 3 2
2 1 4

∣∣∣∣∣∣ = 1(3 · 4− 2 · 1)− 1(1 · 4− 2 · 2) + 1(1 · 1− 2 · 3) = 5.

4. Lines and planes in R3

We know how to describe lines in R2. The point-slope and slope-intercept forms for such
lines are common, with a parametric description of lines in R2 being slightly less common.
In R3, however, the parametric description of a line is most convenient to use.

Consider a line in R3 (or any Rn, for that matter). A line is completely determined
by any two distinct points that lie on it. However, this is the same as saying that a line
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is completely determined by a point on it, and a direction vector for that line, where a
direction vector is any vector whose endpoints are two distinct points on the line.

If (x0, y0, z0) is any point on a line `, and 〈a, b, c〉 a direction vector for `, then the line
is given in parametric form by

x(t) = x0 + at

y(t) = y0 + bt

z(t) = z0 + ct

This parametric representation of a line is far from unique. We can choose any point which
lies on ` for (x0, y0, z0), and any nonzero scalar multiple of a direction vector for ` is still a
direction vector. Of course, this set of equations generalizes to any Rn.

Example. Let 4x + y = 6 be a line in R2. Let’s find parametric equations for this line.
We start by finding any two points on this line; for example, (0, 6) and (1, 2) will do. Then
the direction vector whose endpoints are these two points is given by 〈1,−4〉. Therefore,
parametric equations for this line are given by

x(t) = t

y(t) = 6− 4t

If you want to check your work, you can substitute these equations back into the equation
4x + y = 6 to check that you do not get a contradiction. Of course, these parametric
equations are not unique, since different choices for the starting two points on the line will
usually give different parametric equations.

In contrast to lines, a plane in R3 (this time, our discussion does not generalize to Rn as
easily) is determined by three non-colinear points. However, it is not entirely obvious how
one should get a simple equation from such a description. A bit of thought shows that a
plane is also determined by any point which lies on a plane, and a normal vector for the
plane. A normal vector for a plane is a vector which is orthogonal to every vector that lies
on the plane.

If 〈a, b, c〉 is a normal vector for a plane which passes through (x0, y0, z0), then an equation
for the plane is given by

ax+ by + cz = ax0 + by0 + cz0 = d.

Again, a normal vector is not unique; any nonzero scalar multiple of a normal vector is also
a normal vector. This form of an equation for a plane is often called an implicit form.

How can we translate a description which involves three non-collinear points into an
equation as above? Suppose P,Q,R are three non-collinear points on a plane. Form the

vectors ~PQ, ~PR. Non-collinearity ensures that these two vectors are not parallel. Then

their cross product is orthogonal to both ~PQ, ~PR, and a bit of thought will show that the
cross product will then be orthogonal to any vector on the plane. This cross product, which
is nonzero, is a normal vector, and then we use any of the three points P,Q,R to calculate
d.

Example. (For students to answer:) Sometimes there are questions which involve both
lines and planes. There are many variations, but they all use the same basic facts we’e
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learned. For example, a typical question might be to find the line which determines the
intersection of the two planes 2x+ y + 3z = 0,−x+ 2y + 2 = 0. There are actually several
ways to solve this problem; we’ll consider one of them.

First, notice that the two vectors 〈2, 1, 3〉, 〈−1, 2, 2〉 are respective normal vectors for our
two planes. Their line of intersection has direction vectors which lie on both planes, so
any direction vector for the line of intersection must be orthogonal to both normal vectors.
Taking a cross product of these two vectors yields 〈−4,−7, 5〉, so this will be a direction
vector for the line of intersection. To complete the problem, we need to find a point on
both planes; fortunately the point (0, 0, 0) works, so the line of intersection is given by an
equation `(t) = 〈−4t,−7t, 5t〉.


