Reading Assignment \# 4

Math 13 - Prof. Orellana

April 7, 2010

Read Sections 2.3 and 2.4 (Math 8 review)
Don't forget to give page numbers in the book where you found the answer.

1. Define the partial derivative of a scalar function of two variables. Look at figures 2.45 and 2.46 and explain what these pictures mean.
2. Read Example 3 in Section 2.3 and tell me why did we have to use the definition of derivative to compute the partial derivatives at $(0,0)$.
3. Tell me how to compute the equation of the tangent plane at a point (a, b) given a function $f: X \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$. The steps are outlined in page 111 , basically I want to know how the formula is derived.
4. What does Theorem 3.3 say?
5. What is the point of Example 4? Read the example and the paragraph after the example to answer this question.
6. How do we define " $f(x, y)$ is differentiable at (a, b) "?
7. Read Theorem 3.5, what does "open" mean? If you don't remember, look in the index and tell me how it is defined and in what page.
8. Let $f: X \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$, write the general formula for $D f(x, y)$ and tell me the size of this matrix.
9. State the "Grand definition of Differentiability". What is stronger to say that a function is differentiable at a point \mathbf{a} or to say that all partial derivatives exist at the point a, use the definition to explain your answer.
10. What does it mean to say $\mathbf{h}(\mathbf{x})$ is a "good linear approximation to \mathbf{f} near \mathbf{a} "?
