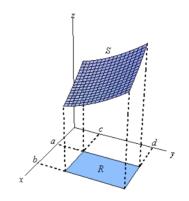
Iterated Integrals and Double Integrals

Rosa Orellana

April 19, 2010

Double Integration



S is described by a function f(x,y) in two variables.

Question: What is the volume under S and over R?

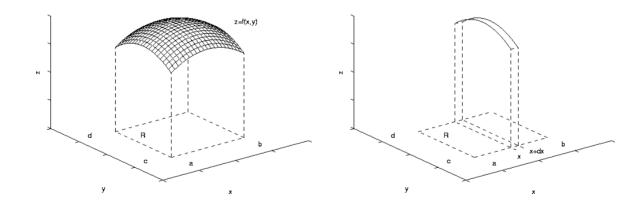
Cavalieri's Principle – The Slicing Method

Let B be a solid and P_x a family of parallel planes such that

- (1) B lies between P_a and P_b ;
- (2) the area of the slice of B cut by P_x is A(x).

Then the volume of B is equal to $\int_a^b A(x)dx.$

Cavalieri's Principle – The Slicing Method



Iterated Integrals

If f is a continuous function and non-negative on a rectangle R,

$$\iint_{R} f(x,y)dA = \int_{a}^{b} \left[\int_{c}^{d} f(x,y) dy \right] dx$$
$$= \int_{c}^{d} \left[\int_{a}^{b} f(x,y) dx \right] dy$$

The Double Integral

This is an operation that assigns to a function f(x,y) defined and continuous over a region D in the plane a number

$$\iint_D f(x,y) \, dx dy$$

NOTE: If $f(x,y) \ge 0$ for all (x,y) in D, then we can think of this number as the volume under the graph of f.

Rectangles

The notation used for rectangles is

$$R = \{(x, y) \in \mathbb{R}^2 | a \le x \le b, c \le y \le d\}$$

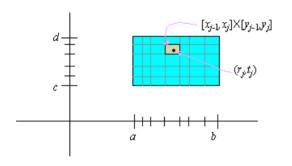
or

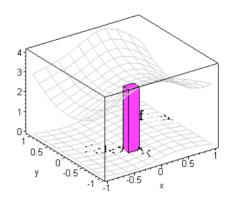
$$R = [a, b] \times [c, d]$$
 - Cartesian Product

Partition of a rectangle

Suppose $R = [a,b] \times [c,d]$, a partition of R is a subdivision of R into smaller rectangles. You divide [a,b] into n equally spaced points $a = x_1 < x_2 < \ldots < x_n = b$ and [c,d] into n equally spaced points $c = y_1 < y_2 < \ldots, y_n = d$ and

$$x_{j+1} - x_j = \frac{b-a}{n}$$
 $y_{k+1} - y_k = \frac{d-c}{n}$.





Definition of Double Integral over a rectangle

The **double integral** is defined by

$$\iint_{R} f \, dA = \lim_{\Delta x_i, \Delta y_j \to 0} \sum_{i,j=1}^{n} f(\mathbf{c_{ij}}) \Delta x_i \Delta y_j$$

provided the limit exists. If the limit exists we say that f is **integrable** on R.

Integrability

• If f is continuous on the closed interval R, then $\iint_R f(x,y) dA$ exists.

• If f is bounded on R and the set of discontinuities of f has zero area, then $\iint_R f(x,y) \, dA \text{ exists.}$

NOTE: Here dA = dxdy or dA = dydx.

Fubini's Theorem

Let f be integrable on a rectangle

$$R = [a, b] \times [c, d],$$

then $\iint_R f(x,y) dA$ can be computed using the method of iterated integrals.

Properties of the Double Integral

- If f + g is integrable, then $\iint_R (f + g) dA = \iint_R f dA + \iint_R g dA;$
- If c is a scalar, then $\iint_R c f dA = c \iint_R f dA$
- If $f(x,y) \leq g(x,y)$ in R, then $\iint_R f(x,y) dA \leq \iint_R g(x,y) dA;$
- If |f| is integrable on R then $|\iint_R f(x,y) dA| \le \iint_R |f(x,y)| dA$.