Paths, Curves and Arc Length

Rosa C. Orellana

April 12, 2010

Definition of a path

Let I = [a, b] be a closed interval for some numbers a < b. $I \subseteq \mathbb{R}$.

Definition: A path in \mathbb{R}^n is a continuous function $\mathbf{x}: I \to \mathbb{R}^n$ where $\mathbf{x}(a)$ and $\mathbf{x}(b)$ are the **endpoints** of the path \mathbf{x} .

Velocity, speed and acceleration

Let $\mathbf{x}:I\to\mathbb{R}^n$ be a differentiable path. Then

- The **velocity** $\mathbf{v}(t) = \mathbf{x}'(t)$.
- The **speed** is $\|\mathbf{v}(t)\|$.

• The acceleration is a(t) = v'(t) = x''(t).

Parametric equation of the tangent line

Let $\mathbf{x}: I \to \mathbb{R}^n$ be a path and $\mathbf{v}(t_0) \neq \mathbf{0}$. Then the parametric equation of the tangent line at t_0 to the path \mathbf{x} is

$$l(t) = x(t_0) + (t - t_0)v(t_0).$$

Length of a path

Definition: The length $L(\mathbf{x})$ of a differentiable path $\mathbf{x}:[a,b]\to\mathbb{R}^n$ is the integral of its speed

$$L(\mathbf{x}) = \int_a^b \|\mathbf{x}'(t)\| \ dt$$