The Chain Rule and

 Directional Derivatives

 Directional Derivatives}

April 7, 2010

The chain rule in two variables

$f: X \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$ differentiable at $\mathbf{x}_{\mathbf{0}}=(a, b)$ $\mathbf{x}: T \subseteq \mathbb{R} \rightarrow \mathbb{R}^{2}$ differentiable at $t=t_{0}$.

$$
\frac{d f}{d t}\left(t_{0}\right)=\frac{\partial f}{\partial x}\left(\mathbf{x}_{0}\right) \frac{d x}{d t}\left(t_{0}\right)+\frac{\partial f}{\partial y}\left(\mathbf{x}_{0}\right) \frac{d y}{d t}\left(t_{0}\right)
$$

This can be rewritten (vector notation):

$$
\frac{d f}{d t}\left(t_{0}\right)=\left(\frac{\partial f}{\partial x}\left(\mathbf{x}_{0}\right), \frac{\partial f}{\partial y}\left(\mathbf{x}_{0}\right)\right) \cdot\left(\frac{d x}{d t}\left(t_{0}\right), \frac{d y}{d t}\left(t_{0}\right)\right)
$$

Or using the gradient:

$$
\frac{d f}{d t}\left(t_{0}\right)=\nabla f\left(\mathbf{x}_{0}\right) \cdot \mathbf{x}^{\prime}\left(t_{0}\right)
$$

Generalization to functions $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$

Let $\mathrm{x}: T \subseteq \mathbb{R} \rightarrow \mathbb{R}^{n}$ and $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
\frac{d f}{d t}\left(t_{0}\right)=\nabla f\left(\mathbf{x}_{\mathbf{0}}\right) \cdot \mathbf{x}^{\prime}\left(t_{0}\right)
$$

And in matrix notation:

$$
\frac{d f}{d t}\left(t_{0}\right)=D f\left(\mathbf{x}_{0}\right) D \mathbf{x}\left(t_{0}\right)
$$

The general chain rule

Let $f: X \subseteq \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ and $\mathbf{x}: T \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

$$
D(f \circ \mathbf{x})\left(\mathrm{t}_{\mathbf{0}}\right)=D f\left(\mathbf{x}_{\mathbf{0}}\right) D \mathbf{x}\left(\mathrm{t}_{\mathbf{0}}\right)
$$

Here: $\mathbf{x}_{\mathbf{0}}=\left(x_{1}\left(\mathbf{t}_{\mathbf{0}}\right), x_{2}\left(\mathbf{t}_{\mathbf{0}}\right), \ldots, x_{n}\left(\mathbf{t}_{\mathbf{0}}\right)\right)$.

The gradient

Let $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a scalar valued function. Then the gradient

$$
\nabla f=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}\right) .
$$

Directional Derivative

Let f be a differentiable function and a be a point in the domain of f then

$$
D_{\mathbf{v}} f(\mathbf{a})=\nabla f(\mathbf{a}) \cdot \mathbf{v}
$$

where \mathbf{v} is a unit vector.

Maximum and minimum values of $D_{\mathbf{v}} f(\mathbf{a})$

- $D_{\mathbf{v}} f(\mathbf{a})$ is maximized when v points in the same direction of the gradient, $\nabla f(\mathbf{a})$.
- $D_{\mathbf{v}} f(\mathbf{a})$ is minimized when \mathbf{v} points in the opposite direction of the gradient, $-\nabla f(\mathbf{a})$.
- Furthermore, the maximum and minimum values of $D_{\mathbf{v}} f(\mathbf{a})$ are $\|\nabla f(\mathbf{a})\|$ and $-\|\nabla f(\mathbf{a})\|$, respectively.

Tangent planes to level surfaces: $f(\mathrm{x})=c$

Let c be any constant and $f: X \subseteq \mathbb{R}^{3} \rightarrow \mathbb{R}$

If x_{0} is a point on the level surface

$$
f(\mathrm{x})=c,
$$

then the vector $\nabla f\left(\mathrm{x}_{0}\right)$ is perpendicular to the level surface at x_{0}.

Computing Tangent plane for level surfaces

Given the equation of a level surface

$$
f(x, y, z)=c
$$

and a point $\mathrm{x}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$, then the equation of the tangent plane is

$$
\nabla f\left(\mathrm{x}_{0}\right) \cdot\left(\mathrm{x}-\mathrm{x}_{0}\right)=0
$$

or if $\mathbf{x}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ then
$f_{x}\left(\mathbf{x}_{0}\right)\left(x-x_{0}\right)+f_{y}\left(\mathbf{x}_{0}\right)\left(y-y_{0}\right)+f_{z}\left(\mathbf{x}_{0}\right)\left(z-z_{0}\right)=0$.

