Derivatives

Rosa Orellana

April 5, 2010

Partial Derivative

Partial derivatives are defined as derivatives of a function of multiple variables when all but the variable of interest are held fixed (constant) during the differentiation. Let $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ then the partial derivative with respect to x_{i} is:
$\frac{\partial f}{\partial x_{i}}=\lim _{h \rightarrow 0} \frac{f\left(x_{1}, \ldots, x_{i}+h, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{n}\right)}{h}$
we also use $f_{x_{i}}$ for partial derivative.

Tangent Planes

Let $f: X \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$. If the graph of $z=$ $f(x, y)$ has a tangent plane at $(a, b, f(a, b))$, then the tangent plane has equation

$$
h(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

REMARK: The existence of a tangent plane to the graph of $z=f(x, y)$ is a stronger condition than the existence of partial derivatives.

$$
f(x, y)=||x|-|y||-|x|-|y|
$$

is a function with partial derivatives at $(0,0)$, but no tangent plane at $(0,0)$. [See the graph]

Good Linear Approximation

We say that
$h(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)$
is a good linear approximation to the function $f: X \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ at the point (a, b) if

$$
\lim _{(x, y) \rightarrow(a, b)} \frac{f(x, y)-h(x, y)}{\|(x, y)-(a, b)\|}=0
$$

Differentiable

A function $f: X \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$ is differentiable at $(a, b) \in X$ if
(1) the partials f_{x} and f_{y} exist at (a, b). and
(2) $h(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)$ is a good linear approximation of $f(x, y)$ near (a, b).
A function that is differentiable at all points in the domain is called differentiable.

NOTE: We require that X be an open set.

Generalization to $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$

$h(\mathbf{x})=f(\mathbf{a})+f_{x_{1}}(\mathbf{a})\left(x_{1}-a_{1}\right)+\cdots+f_{x_{n}}(\mathbf{a})\left(x_{n}-a_{n}\right)$
is the generalization to the tangent plane. We say that $h(\mathbf{x})$ is a good linear approximation to $f(x, y)$ near a if

$$
\lim _{\mathbf{x} \rightarrow \mathbf{a}} \frac{f(\mathbf{x})-h(\mathbf{x})}{\|\mathbf{x}-\mathbf{a}\|}=0
$$

Differentiability of $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$

We say that $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable at a if
(1) all partial derivatives $f_{x_{i}}$ exist at a; and
(2) $h(x)$ is a good linear approximation to $f(\mathrm{x})$ near a .

We say that f is differentiable if f is differentiable at every point in the domain X (open set).

The Gradient of $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$

The gradient of f is

$$
\begin{gathered}
\nabla f(\mathbf{x})=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}\right) \\
h(\mathbf{x})=f(\mathbf{a})+f_{x_{1}}(\mathbf{a})\left(x_{1}-a_{1}\right)+\cdots+f_{x_{n}}(\mathbf{a})\left(x_{n}-a_{n}\right)
\end{gathered}
$$

can be rewritten

$$
h(\mathbf{x})=f(\mathbf{a})+\nabla f(\mathbf{a}) \cdot(\mathbf{x}-\mathbf{a})
$$

Here we think of $\nabla f(\mathbf{a})$ and $\mathbf{x}-\mathbf{a}$ as vectors.

Derivative Matrix for scalar valued functions

Let $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$, then

$$
D f(\mathbf{a})=\left[f_{x_{1}}(\mathbf{a}) \quad f_{x_{2}}(\mathbf{a}) \cdots f_{x_{n}}(\mathbf{a})\right]
$$

This is a $1 \times n$ matrix.

We can rewrite,

$$
\nabla f(\mathbf{a}) \cdot(\mathbf{x}-\mathbf{a})=\operatorname{Df}(\mathbf{a})\left(\begin{array}{c}
x_{1}-a_{1} \\
x_{2}-a_{2} \\
\vdots \\
x_{n}-a_{n}
\end{array}\right)
$$

General Derivative Matrix

Let $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a function $f(\mathrm{x})=$ ($\left.f_{1}(\mathrm{x}), f_{2}(\mathrm{x}), \ldots, f_{m}(\mathrm{x})\right)$

$$
D f(\mathrm{x})=\left(\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\
\vdots & \vdots & \cdots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right)
$$

Grand Definition of Differentiability

Let $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and let a in $X . f$ is differentiable at a if
(1) $D f($ a) exists and
(2) $h(x)=f(a)+D f(a)(x-a)$ is a good linear approximation to f near \mathbf{a}.

Properties of the derivative

Let f and g be two differentiable functions then
(1) $D(\mathbf{f}+\mathbf{g})(\mathbf{a})=D(\mathbf{f})(\mathbf{a})+D(\mathbf{g})(\mathbf{a})$
(2) $D(c \mathbf{f})(\mathbf{a})=c D \mathbf{f}(\mathbf{a})$ for any scalar c.

If f and g are scalar valued functions:
(1) $D(f g)(\mathbf{a})=g(\mathbf{a}) D f(\mathbf{a})+f(\mathbf{a}) D g(\mathbf{a})$.
(2) $D(f / g)(\mathbf{a})=\frac{g(\mathbf{a}) D f(\mathbf{a})-f(\mathbf{a}) D g(\mathbf{a})}{g(\mathbf{a})^{2}}$.

