# Functions in several variables and limits 

Rosa Orellana

April 2, 2010

## Functions

Any function $f: X \rightarrow Y$ has three features:

- A domain set $X$;
- A codomain set $Y$;
- A rule of assignment - a rule that assign to each element $x$ in $X$ of the domain a "unique" element $f(x)$ in $Y$ (the codomain).


## Scalar-valued functions

Scalar valued functions are functions such that the domain is $X \subseteq \mathbb{R}^{n}$ and the codomain is $\mathbb{R}$ or a subset of $\mathbb{R}$.

$$
f: X \rightarrow \mathbb{R}
$$

Note: Review the definitions of range, one-to-one and onto.

## The Graph of a function

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a scalar valued function. Let $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, then the graph of $f$ is:

$$
\text { Graph } f=\left\{(\mathbf{x}, f(\mathrm{x})) \mid \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}\right\}
$$

For example if $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, then the graph of $f$ is the set of points in $\mathbb{R}^{3}$ that look like $(x, y, f(x, y))$, where $(x, y)$ is in $\mathbb{R}^{2}$.

## Level Curves

Let $f$ be a function of two variables and let $c$ be a constant. The set of all $(x, y)$ in the plane $z=c$ such that

$$
f(x, y)=c
$$

is called a level curve of $f$ with value $c$.

## Definition of limit

Definition: Let $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a function. Then

$$
\lim _{x \rightarrow a} f(x)=L
$$

means that given $\epsilon>0$, you can find a $\delta>0$ (often depending on $\epsilon$ ) such that if $\mathrm{x} \in X$ and $0<\|\mathbf{x}-\mathbf{a}\|<\delta$, then $0<\|f(\mathbf{x})-\mathbf{L}\|<\epsilon$

## Properties of limits

1. If $\lim _{x \rightarrow \mathbf{a}} f(x)=\mathbf{L}$ and $\lim _{x \rightarrow a} g(x)=M$ then $\lim _{\mathrm{x} \rightarrow \mathrm{a}}(\mathrm{f}+\mathrm{g})(\mathrm{x})=\mathrm{L}+\mathrm{M}$
2. If $\lim _{\mathbf{x} \rightarrow \mathbf{a}} \mathbf{f}(\mathbf{x})=\mathbf{L}$, then $\lim _{\mathbf{x} \rightarrow \mathbf{a}} k \mathbf{f}(\mathbf{x})=$ $k \mathbf{L}$, where $k$ is a scalar.
3. if $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$ then $\lim _{x \rightarrow a}(f g)(x)=L M$
4. If $\lim _{\mathbf{x} \rightarrow \mathbf{a}} \mathbf{f}(\mathbf{x})=\mathbf{L}$ and $g(\mathbf{x}) \neq 0$ for $\mathbf{x} \in X$, and $\lim _{\mathbf{x} \rightarrow \mathbf{a}} \mathbf{g}(\mathbf{x})=\mathbf{M} \neq 0$, then $\lim _{\mathrm{x} \rightarrow \mathrm{a}}(\mathrm{f} / \mathrm{g})(\mathrm{x})=\mathrm{L} / \mathrm{M}$.

## Continuous Functions

## Definition: Let $\mathrm{f}: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and let

 $\mathbf{a} \in X$. Then, $f$ is continuous at $\mathbf{a}$ if$$
\lim _{x \rightarrow a} f(x)=f(a) .
$$

f is called continuous if it is continuous at every point of the domain $X$.

## Properties of continuous functions

- The sum $f+g$ of two continuous functions is a continuous function.
- The scalar multiple of a continuous function $k f$ is continous.
- The product $f g$ and the quotient $f / g$ (when defined) of two continuous functions is continuous.

