Functions in several variables and limits

Rosa Orellana

April 2, 2010

Functions

Any function $f: X \to Y$ has three features:

- A domain set X;
- A codomain set *Y*;
- A rule of assignment a rule that assign to each element x in X of the domain a "unique" element f(x) in Y (the codomain).

Scalar-valued functions

Scalar valued functions are functions such that the domain is $X \subseteq \mathbb{R}^n$ and the codomain is \mathbb{R} or a subset of \mathbb{R} .

$$f:X\to\mathbb{R}$$

Note: Review the definitions of range, one-to-one and onto.

The Graph of a function

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a scalar valued function. Let $\mathbf{x} = (x_1, x_2, \dots, x_n)$, then the **graph** of f is:

Graph
$$f = \{(\mathbf{x}, f(\mathbf{x})) | \mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n \}$$

For example if $f: \mathbb{R}^2 \to \mathbb{R}$, then the graph of f is the set of points in \mathbb{R}^3 that look like (x, y, f(x, y)), where (x, y) is in \mathbb{R}^2 .

Level Curves

Let f be a function of two variables and let c be a constant. The set of all (x,y) in the plane z=c such that

$$f(x,y) = c$$

is called a **level curve** of f with value c.

Definition of limit

Definition: Let $f:X\subseteq\mathbb{R}^n\to\mathbb{R}^m$ be a function. Then

$$\lim_{x \to a} f(x) = L$$

means that given $\epsilon > 0$, you can find a $\delta > 0$ (often depending on ϵ) such that if $\mathbf{x} \in X$ and $0 < \|\mathbf{x} - \mathbf{a}\| < \delta$, then $0 < \|f(\mathbf{x}) - \mathbf{L}\| < \epsilon$

Properties of limits

- 1. If $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$ then $\lim_{x\to a} (f+g)(x) = L+M$
- 2. If $\lim_{x\to a} f(x) = L$, then $\lim_{x\to a} kf(x) = kL$, where k is a scalar.
- 3. if $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$ then $\lim_{x\to a} (fg)(x) = LM$
- 4. If $\lim_{x\to a} f(x) = L$ and $g(x) \neq 0$ for $x \in X$, and $\lim_{x\to a} g(x) = M \neq 0$, then $\lim_{x\to a} (f/g)(x) = L/M$.

Continuous Functions

Definition: Let $f: X \subseteq \mathbb{R}^n \to \mathbb{R}^m$ and let $a \in X$. Then, f is continuous at a if

$$\lim_{x \to a} f(x) = f(a).$$

f is called **continuous** if it is continuous at every point of the domain X.

Properties of continuous functions

• The sum f + g of two continuous functions is a continuous function.

• The scalar multiple of a continuous function kf is continuous.

• The product fg and the quotient f/g (when defined) of two continuous functions is continuous.