# Matrices and Coordinates 

Rosa Orellana

March 31, 2010

## Equation of a plane

A plane in $\mathbb{R}^{3}$ is determined by a point in the plane $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ and a vector $\mathbf{n}=$ ( $A, B, C$ ) that is normal (perpendicular) to the plane.

$$
\begin{aligned}
\mathbf{n} \cdot \overrightarrow{P_{0} P} & =(A, B, C) \cdot\left(x-x_{0}, y-y_{0}, z-z_{0}\right) \\
& =A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right) \\
& =0
\end{aligned}
$$

## Operations on Matrices

An $m \times n$ matrix is an array of real numbers with $m$ rows and $n$ columns.

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \cdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)=\left(a_{i j}\right)
$$

The sum of two $m \times n$ matrices $A$ and $B$ is the $m \times n$ matrix $C$ obtained by adding the corresponding entries in $A$ and in $B$, that is $C=A+B=\left(a_{i j}+b_{i j}\right)$.

## Matrix Multiplication

If $A$ is an $m \times n$ matrix and $B$ is an $n \times p$ matrix then the product $A B$ is the matrix where the $i j$-th entry is obtained by taking the dot product of the $i$-th row of $A$ with the $j$-th column of $B$.

NOTE: In order to define the product of $A$ and $B$ we require that the number of columns of $A$ be equal to the number or rows of $B$. Otherwise, the product is undefined.

## Coordinate Systems

The coordinates of a point are the components of a tuple of numbers used to represent the location of the point in the plane or space.

For 2-dimensions:

- Choose an "origin" - $(0,0)$.
- Cartesian or rectangular coordinates

$$
(x, y)
$$

$x$-horizontal and $y$-vertical direction

## Polar coordinates: (r, $\theta$ )

$r$ - distance from origin and
$\theta$ - angle from positive $x$-axis, $0 \leq \theta<2 \pi$.
If we want to describe every point uniquely we require that $r \geq 0$ and $0 \leq \theta<2 \pi$.

NOTE: In polar coordinates you think that every point except the origin is on a circle of radius $r$.

Polar coordinates are useful in doing computations with curves that have symmetry around the origin.

Relation between polar and cartesian coordinates


Polar to Cartesian:
$x=r \cos \theta$
$y=r \sin \theta$

Cartesian to Polar:
$r=\sqrt{x^{2}+y^{2}}$
$\tan (\theta)=\frac{y}{x}$

## Cylindrical Coordinates: ( $r, \theta, z$ )

These are for 3D. They are good for studying objects possessing an axis of symmetry.

We usually think that every point in space not on the $z$-axis is on a cylinder.

Cartesian to Cylindrical
Cylindrical to Cartesian
$x=r \cos \theta$
$r=\sqrt{x^{2}+y^{2}}$
$y=r \sin \theta$
$\tan (\theta)=\frac{y}{x}$
$z=z$
$z=z$

## Cylindrical Coordinates



## Spherical Coordinates: ( $\rho, \phi, \theta$ )

- These are to describe a point in 3D. They are useful to study objects that have a center of symmetry.
- Here we think as every point except (0,0,0) lies on a sphere.
- $\rho$ - distance from the origin.
$\phi$ - longitude and takes values $0 \leq \phi \leq \pi$.
$\theta$ - latitude and takes values $0 \leq \theta<2 \pi$.


## Spherical Coordinates




## Relation between cartesian and spherical

Spherical to cartesian:
$x=\rho \sin \phi \cos \theta$
$y=\rho \sin \phi \sin \theta$
$z=\rho \cos \phi$

Cartesian to spherical:
$\rho=\sqrt{x^{2}+y^{2}+z^{2}}$
$\tan (\phi)=\sqrt{x^{2}+y^{2}} / z$
$\tan (\theta)=\frac{y}{x}$.

## Relation between cylindrical and spherical

Spherical to cylindrical:
$r=\rho \sin \phi$
$z=\rho \cos \phi$
$\theta=\theta$.

Cylindrical to spherical:
$\rho=\sqrt{r^{2}+z^{2}}$
$\tan (\phi)=\frac{r}{z}$
$\theta=\theta$.

