Matrices and Coordinates

Rosa Orellana

March 31, 2010

Equation of a plane

A plane in \mathbb{R}^3 is determined by a point in the plane $P_0(x_0, y_0, z_0)$ and a vector $\mathbf{n} = (A, B, C)$ that is normal (perpendicular) to the plane.

$$\mathbf{n} \cdot P_{0} \stackrel{\rightarrow}{P} = (A, B, C) \cdot (x - x_{0}, y - y_{0}, z - z_{0})$$

= $A(x - x_{0}) + B(y - y_{0}) + C(z - z_{0})$
= 0

1

Operations on Matrices

An $m \times n$ matrix is an array of real numbers with m rows and n columns.

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} = (a_{ij})$$

The sum of two $m \times n$ matrices A and B is the $m \times n$ matrix C obtained by adding the corresponding entries in A and in B, that is $C = A + B = (a_{ij} + b_{ij}).$

Matrix Multiplication

If A is an $m \times n$ matrix and B is an $n \times p$ matrix then the **product** AB is the matrix where the *ij*-th entry is obtained by taking the dot product of the *i*-th row of A with the *j*-th column of B.

NOTE: In order to define the product of Aand B we require that the number of columns of A be equal to the number or rows of B. Otherwise, the product is undefined.

Coordinate Systems

The **coordinates** of a point are the components of a tuple of numbers used to represent the location of the point in the plane or space.

For 2-dimensions:

- Choose an "origin" (0,0).
- Cartesian or rectangular coordinates

(x,y)

x-horizontal and y-vertical direction

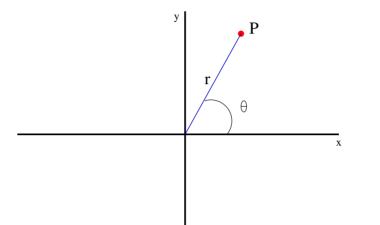
Polar coordinates: (\mathbf{r}, θ)

r - distance from origin and θ - angle from positive *x*-axis, $0 \le \theta < 2\pi$. If we want to describe every point uniquely we require that $r \ge 0$ and $0 \le \theta < 2\pi$.

NOTE: In polar coordinates you think that every point except the origin is on a circle of radius r.

Polar coordinates are useful in doing computations with curves that have symmetry around the origin.

Relation between polar and cartesian coordinates



Polar to Cartesian:Cartesian to Polar: $x = r \cos \theta$ $r = \sqrt{x^2 + y^2}$ $y = r \sin \theta$ $\tan(\theta) = \frac{y}{x}$

6

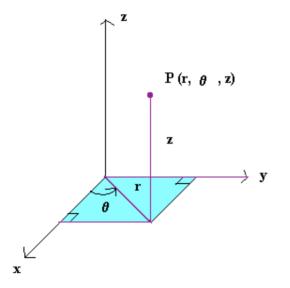
Cylindrical Coordinates: (r, θ, z)

These are for 3D. They are good for studying objects possessing an axis of symmetry.

We usually think that every point in space not on the z-axis is on a cylinder.

Cartesian to Cylindrical	Cylindrical to Cartesian
$x = r\cos\theta$	$r = \sqrt{x^2 + y^2}$
$y = r \sin \theta$	$tan(\theta) = \frac{y}{x}$
z = z	z = z

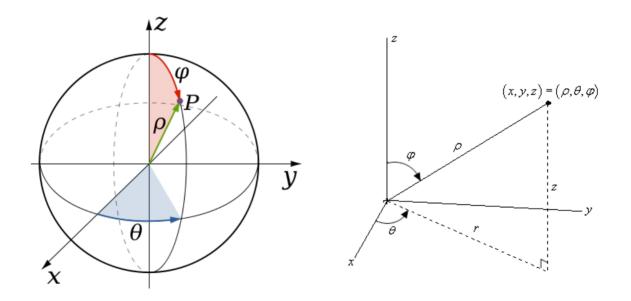
Cylindrical Coordinates



Spherical Coordinates: (ρ, ϕ, θ)

- These are to describe a point in 3D. They are useful to study objects that have a center of symmetry.
- Here we think as every point except (0,0,0) lies on a sphere.
- ρ distance from the origin.
 - ϕ longitude and takes values 0 $\leq \phi \leq \pi.$
 - θ latitude and takes values $0 \le \theta < 2\pi$.

Spherical Coordinates



10

Relation between cartesian and spherical

Spherical to cartesian:

- $x = \rho \sin \phi \cos \theta$
- $y = \rho \sin \phi \sin \theta$
- $z=\rho\cos\phi$

Cartesian to spherical: $\rho = \sqrt{x^2 + y^2 + z^2}$ $\tan(\phi) = \sqrt{x^2 + y^2}/z$ $\tan(\theta) = \frac{y}{x}.$

Relation between cylindrical and spherical

Spherical to cylindrical:

- $r=\rho\sin\phi$
- $z = \rho \cos \phi$
- $\theta = \theta$.

Cylindrical to spherical:

$$\rho = \sqrt{r^2 + z^2}$$

 $\tan(\phi) = \frac{r}{z}$
 $\theta = \theta$.