Stokes' and Gauss' Theorems

May 26, 2010

Stokes' Theorem

Let S be a bounded, piecewise smooth oriented surface in \mathbb{R}^3 . Assume ∂S consists of simple closed curves oriented consistently with S. Let \mathbf{F} be a C^1 vector field. Then

$$\iint_{S} \nabla \times \mathbf{F} \cdot d\mathbf{S} = \oint_{\partial S} \mathbf{F} \cdot d\mathbf{s}$$

Gauss' Theorem

Let W be a bounded solid region in \mathbb{R}^3 whose boundary ∂W consists of smooth, closed orientable surfaces, each oriented so that \mathbf{n} (unit normal) points away from W. Let \mathbf{F} be a class C^1 vector field. Then

$$\iint_{\partial W} \mathbf{F} \cdot d\mathbf{S} = \iiint_{W} \nabla \cdot \mathbf{F} \, dV$$

Surface Independence

Let G be a vector field defined on a region R in \mathbb{R}^3 . If either

- (a) G = curl F for some F or
- (b) div G = 0 and R is all of \mathbb{R}^3 , then

$$\iint_{S_1} \mathbf{G} \cdot d\mathbf{S} = \iint_{S_2} \mathbf{G} \cdot d\mathbf{S}$$

whenever S_1 and S_2 are two oriented surfaces in R such that $\partial S_1 = \partial S_2$.

Path Independence and FT of line integrals

A vector field \mathbf{F} on a region in \mathbb{R}^n is the gradient of a some function if and only if, for any two paths C_1 and C_2 with the same endpoints

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{s} = \int_{C_2} \mathbf{F} \cdot d\mathbf{s}$$