Surface Area

Rosa Orellana

May 18, 2010

Standard Normal Vector

Given $\mathbf{X}(s, t)=(x(s, t), y(s, t), z(s, t))$, we have two tangent vectors:

$$
\begin{aligned}
& \mathbf{T}_{s}=\frac{\partial \mathbf{T}}{\partial s}=\left(\frac{\partial x}{\partial s}, \frac{\partial y}{\partial s}, \frac{\partial z}{\partial s}\right) \\
& \mathbf{T}_{t}=\frac{\partial \mathbf{T}}{\partial t}=\left(\frac{\partial x}{\partial t}, \frac{\partial y}{\partial t}, \frac{\partial z}{\partial t}\right)
\end{aligned}
$$

Then the standard normal vector is

$$
\mathbf{N}=\mathbf{T}_{s} \times \mathbf{T}_{t}
$$

Smooth Surfaces

A parametrized surface S is smooth at a point $\mathbf{X}\left(s_{0}, t_{0}\right)$ if \mathbf{X} is C^{1} in a neighborhood of (s_{0}, t_{0}) and if

$$
\mathbf{N}\left(s_{0}, y_{0}\right)=\mathbf{T}_{s} \times \mathbf{T}_{t} \neq \mathbf{0}
$$

Surface Area

Surface area of $S=\iint_{D}\left\|\mathbf{T}_{s} \times \mathbf{T}_{t}\right\| d s d t$.

