Conservative Vector Fields and Path Independence

May 14, 2010

Definitions

- A path C is **simple** if it doesn't cross it-self.
- A region *D* is **open** if it doesnt contain any of its boundary points.
- A region *D* is **connected** if we can connect any two points in the region with a path that lies completely in *D*.

Simply-Connected

A region R in \mathbb{R}^2 or \mathbb{R}^3 is **simply-connected** if it consists of a single connected piece and if every simple closed curve C in R can be continuously shrunk to a point while remaining in R throughout the deformation.

Path-Independent Line Integrals

Definition: A continuous vector field **F** has **path-independent line integrals** if

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{s} = \int_{C_2} \mathbf{F} \cdot d\mathbf{s}$$

for any two simple, piecewise C^1 , oriented curves in the domain of \mathbf{F} with the same endpoints.

Path-Independent Property

Theorem: Let \mathbf{F} be continuous vector field. Then \mathbf{F} has a path-independent line integrals if and only if

$$\oint_C \mathbf{F} \cdot d\mathbf{s} = \mathbf{0}$$

for every piecewise C^1 , simple, closed curve C in the domain of **F**.

Conservative Vector Fields

F is a **conservative vector field** if there is a scalar function f such that

$$\mathbf{F} = \nabla f$$

The function f is called a **potential function** for the vector field.

Test for a vector field to be conservative

Let \mathbf{F} be a vector field of class C^1 whose domain is simply-connected region R in either \mathbb{R}^2 or \mathbb{R}^3 . Then $\mathbf{F} = \nabla f$ for some scalar-valued function f of class C^2 on R if and only if

$$\nabla \times \mathbf{F} = \mathbf{0}$$

for all points of R.

Path-Independence and Conservative fields

If \mathbf{F} is a continuous vector field on an open connected region D and if $\int_C \mathbf{F} \cdot d\mathbf{s}$ is independent of path (for any path in D) then \mathbf{F} is a conservative vector field on D.

Fundamental Theorem of Line Integrals

Suppose that C be a C^1 oriented path given by c(t), $a \le t \le b$. And suppose that f is a function whose gradient vector, ∇f , is continuous on C. Then,

$$\int_{\mathbf{c}} \nabla f \cdot d\mathbf{s} = f(\mathbf{c}(b)) - f(\mathbf{c}(a))$$

Note that c(a) represents the initial point on C while c(b) represents the final point on C.