Green's Theorem

May 10, 2010

Green's Theorem

D is closed bounded region and $C=\partial D$ its boundary. Let $\mathbf{F}(x, y)=M(x, y) \mathbf{i}+N(x, y) \mathbf{j}$ a vector field. Then

$$
\oint_{C} M d x+N d y=\iint_{D}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y
$$

WARNING: Here C must be oriented so that D is on the left as one traverses C.

Vector Formulation of Green's Theorem

$$
\mathbf{F}(x, y)=M(x, y) \mathbf{i}+N(x, y) \mathbf{j}
$$

$$
\oint_{\partial D} \mathbf{F} \cdot d \mathbf{s}=\iint_{D}(\nabla \times \mathbf{F}) \cdot \mathbf{k} d A
$$

Recall: $\nabla \times \mathbf{F}$ is the curl of \mathbf{F}.

Divergence Theorem in the plane

D is a closed bounded region and \mathbf{n} is the outward unit normal vector to D and $\mathbf{F}=$ $M(x, y) \mathbf{i}+N(x, y) \mathbf{j}$, then

$$
\oint_{\partial D} \mathbf{F} \cdot \mathbf{n} d s=\iint_{D} \nabla \cdot \mathbf{F} d A
$$

Recall: $\nabla \cdot \mathbf{F}$ is the divergence.

