Scalar and Vector Line Integrals

May 5, 2010

Scalar Line Integrals

Let $\mathrm{x}:[a, b] \rightarrow \mathbb{R}^{n}$ be a C^{1} path. And $f: X \subseteq$ $\mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous function such that the domain X contains the image of \mathbf{x}. The scalar line integral of f along \mathbf{x} is

$$
\int_{a}^{b} f(\mathrm{x}(t))\left\|\mathbf{x}^{\prime}(t)\right\| d t
$$

NOTATION: This integral is usually written $\int_{\mathrm{X}} f d s$.

Vector Line Integral

The vector line integral of \mathbf{F} along \mathbf{x} :
$[a, b] \rightarrow \mathbb{R}^{n}$ is

$$
\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s}=\int_{a}^{b} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}^{\prime}(t) d t
$$

Physical Interpretation of Line Integrals

If \mathbf{F} is a force field in space, then the vector line integral is the work done by \mathbf{F} on a particle as the particle moves along the path \mathbf{x}.

Tangent and Vector Line Integral

Let $\mathrm{x}:[a, b] \rightarrow \mathbb{R}^{n}$ with $\mathrm{x}^{\prime}(t) \neq 0$ in $[a, b]$. Unit tangent vector \mathbf{T} :

$$
\mathbf{T}(t)=\frac{\mathbf{x}^{\prime}(t)}{\left\|\mathbf{x}^{\prime}(t)\right\|}
$$

Then

$$
\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s}=\int_{\mathbf{x}}(\mathbf{F} \cdot \mathbf{T}) d s
$$

Reparametrizations of Paths

We say that $\mathbf{y}:[c, d] \rightarrow \mathbb{R}^{n}$ is a reparametrization of the path $\mathbf{x}:[a, b] \rightarrow \mathbf{R}^{n}$ if both describe the same curve.

Mathematically, this means that there is a one-to-one and onto C^{1} function $u:[a, b] \rightarrow$ $[c, d]$ such that $\mathbf{x}(u(t))=y(t)$ and the inverse of u is also C^{1}.

Scalar Line Integrals
 Do NOT depend on parametrization

Theorem: If \mathbf{y} is a reparametrization of \mathbf{x} then

$$
\int_{\mathbf{y}} f d s=\int_{\mathbf{x}} f d s
$$

Vector Line Integrals and parametrizations

If y is a reparametrization of x . Then

- If y is orientation-preserving, then
$\int_{\mathbf{y}} \mathbf{F} \cdot d \mathbf{s}=\int_{\mathrm{x}} \mathbf{F} \cdot d \mathbf{s}$
- If \mathbf{y} is orientation-reversing, then

$$
\int_{\mathbf{y}} \mathbf{F} \cdot d \mathbf{s}=-\int_{\mathrm{X}} \mathbf{F} \cdot d \mathbf{s}
$$

