Review of vectors

Rosa Orellana

March 29, 2010

Vectors in \mathbb{R}^{n}

In this class a scalar is simply a real number. An element in \mathbb{R}.

A vector in \mathbb{R}^{2} is an ordered pair (x, y) of real numbers.

A vector in \mathbb{R}^{3} is an ordered triple (x, y, z) of real numbers.

A vector in \mathbb{R}^{n} is an ordered n-tuple ($x_{1}, x_{2}, \ldots, x_{n}$) of n real numbers.

Operations on vectors

Vector Addition: Let $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ in \mathbb{R}^{n} then their sum is

$$
\mathbf{a}+\mathbf{b}=\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right)
$$

Scalar Multiplication: Let $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be a vector in \mathbb{R}^{n} and k any scalar then

$$
k \mathbf{a}=\left(k a_{1}, k a_{2}, \ldots, k a_{n}\right)
$$

The standard basis vectors

The standard basis vectors in \mathbb{R}^{2} are $\mathbf{i}=(1,0)$ and $\mathbf{j}=(0,1)$.

The standard basis vectors in \mathbb{R}^{3} are $\mathbf{i}=(1,0,0)$ and $\mathbf{j}=(0,1,0)$ and $\mathbf{k}=(0,0,1)$.

The standard basis vectors in \mathbb{R}^{n} are $\mathbf{e}_{1}=(1,0, \ldots, 0), \mathbf{e}_{2}=(0,1,0, \ldots, 0), \ldots$, $\mathbf{e}_{n}=(0, \ldots, 0,1)$.

Vector equation for a line in \mathbb{R}^{3}

The vector parametric equation for a line through the point $P\left(b_{1}, b_{2}, b_{3}\right)$, with position vector $\overrightarrow{O P}=\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$, and parallel to $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ is

$$
\mathbf{r}(t)=\mathbf{b}+t \mathbf{a}
$$

The Dot Product

Let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ and $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right)$ be two vectors in \mathbb{R}^{n}. The dot product of a and b is

$$
\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a 2 b_{2}+\ldots+a_{n} b_{n}
$$

When $n=3, \mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$ and $\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}+c_{1} c_{2}$.

Length, Angle and Projection

The length of a vector is $\|\mathbf{a}\|=\sqrt{\mathbf{a} \cdot \mathbf{a}}$
The angle between two vectors \mathbf{a} and \mathbf{b} is

$$
\theta=\cos ^{-1}\left(\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|\|\mathbf{b}\|}\right)
$$

The projection of vector b onto a is

$$
\operatorname{proj}_{\mathrm{a}} \mathbf{b}=\left(\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}
$$

$\frac{\mathrm{a} \cdot \mathbf{b}}{\|\mathbf{a}\|}$ is called the scalar projection.

The Cross Product for vectors in \mathbb{R}^{3}

For two vectors a and b in \mathbb{R}^{3}, the cross product of \mathbf{a} and \mathbf{b} is the vector $\mathbf{a} \times \mathbf{b}$ such that:

- The length is $\|\mathbf{a} \times \mathbf{b}\|=\|\mathbf{a}\|\|\mathbf{b}\| \sin \theta$.
- The direction is determined by extending the fingers of your right hand along the vector a and curling them towards the vector \mathbf{b}, the thumb points in the direction of $\mathbf{a} \times \mathbf{b}$

Note: If \mathbf{a} is parallel to \mathbf{b}, then $\mathbf{a} \times \mathbf{b}=0$.

Determinants

Recall that a matrix is an array of numbers (in our case of real numbers).

The determinant of a 2×2 matrix
$A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is $\operatorname{det}(A)=|A|=a d-b c$.
The determinant of a 3×3 matrix
$A=\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)$ is
$\operatorname{det}(A)=|A|=a e i+b f g+c d h-c e g-a f h-b d i$.

Computing the cross product using matrices

If $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$ are two vectors in \mathbb{R}^{3} then

$$
\mathbf{a} \times \mathbf{b}=\operatorname{det}\left(\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right)
$$

