Review of vectors

Rosa Orellana

March 29, 2010

Vectors in \mathbb{R}^n

In this class a **scalar** is simply a real number. An element in \mathbb{R} .

A **vector** in \mathbb{R}^2 is an ordered pair (x,y) of real numbers.

A vector in \mathbb{R}^3 is an ordered triple (x, y, z) of real numbers.

A **vector** in \mathbb{R}^n is an ordered n-tuple (x_1, x_2, \dots, x_n) of n real numbers.

Operations on vectors

Vector Addition: Let $\mathbf{a} = (a_1, a_2, \dots, a_n)$ and $\mathbf{b} = (b_1, b_2, \dots, b_n)$ in \mathbb{R}^n then their **sum** is

$$a + b = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)$$

Scalar Multiplication: Let $\mathbf{a} = (a_1, a_2, \dots, a_n)$ be a vector in \mathbb{R}^n and k any scalar then

$$k\mathbf{a} = (ka_1, ka_2, \dots, ka_n)$$

The standard basis vectors

The standard basis vectors in \mathbb{R}^2 are $\mathbf{i}=(1,0)$ and $\mathbf{j}=(0,1)$.

The standard basis vectors in \mathbb{R}^3 are $\mathbf{i}=(1,0,0)$ and $\mathbf{j}=(0,1,0)$ and $\mathbf{k}=(0,0,1)$.

The standard basis vectors in \mathbb{R}^n are $\mathbf{e}_1=(1,0,\ldots,0),\ \mathbf{e}_2=(0,1,0,\ldots,0),\ldots,$ $\mathbf{e}_n=(0,\ldots,0,1).$

Vector equation for a line in \mathbb{R}^3

The vector parametric equation for a line through the point $P(b_1, b_2, b_3)$, with position vector $\vec{OP} = \mathbf{b} = (b_1, b_2, b_3)$, and parallel to $\mathbf{a} = (a_1, a_2, a_3)$ is

$$\mathbf{r}(t) = \mathbf{b} + t\mathbf{a}$$

The Dot Product

Let $\mathbf{a} = (a_1, \dots, a_n)$ and $\mathbf{b} = (b_1, \dots, b_n)$ be two vectors in \mathbb{R}^n . The **dot product** of a and \mathbf{b} is

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + \ldots + a_n b_n$$

When n = 3, $a = (a_1, a_2, a_3)$ and $b = (b_1, b_2, b_3)$ and $a \cdot b = a_1b_1 + a_2b_2 + c_1c_2$.

Length, Angle and Projection

The **length** of a vector is $\|\mathbf{a}\| = \sqrt{\mathbf{a} \cdot \mathbf{a}}$

The **angle** between two vectors **a** and **b** is

$$\theta = \cos^{-1}\left(\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|}\right)$$

The projection of vector b onto a is

$$\operatorname{proj}_{a}b = \left(\frac{a \cdot b}{a \cdot a}\right)a$$

 $\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|}$ is called the **scalar projection**.

The Cross Product for vectors in \mathbb{R}^3

For two vectors \mathbf{a} and \mathbf{b} in \mathbb{R}^3 , the **cross product** of \mathbf{a} and \mathbf{b} is the vector $\mathbf{a} \times \mathbf{b}$ such that:

- The length is $\|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \|\mathbf{b}\| \sin \theta$.
- ullet The direction is determined by extending the fingers of your right hand along the vector ${\bf a}$ and curling them towards the vector ${\bf b}$, the thumb points in the direction of ${\bf a} \times {\bf b}$

Note: If a is parallel to b, then $a \times b = 0$.

Determinants

Recall that a matrix is an array of numbers (in our case of real numbers).

The **determinant of a** 2×2 matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 is $\det(A) = |A| = ad - bc$.

The **determinant of a** 3×3 matrix

$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \text{ is }$$

$$\det(A) = |A| = aei + bfg + cdh - ceg - afh - bdi.$$

Computing the cross product using matrices

If $\mathbf{a} = (a_1, a_2, a_3)$ and $\mathbf{b} = (b_1, b_2, b_3)$ are two vectors in \mathbb{R}^3 then

$$\mathbf{a} \times \mathbf{b} = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix}$$