
Exercises: Double and Triple Integrals

Solutions
Math 13, Spring 2010

1. Consider the iterated integral∫ 1

0

∫ 1−x2

0

∫ 1−x

0

f(x, y, z)dy dz dx.

(a) Rewrite this integral as an equivalent iterated integral in the order dy dx dz.

(b) Rewrite the integral in the order dz dx dy.

Solution. The triple integral is an integral over the solid W in R3 that consists of all
points (x, y, z) with

0 ≤ x ≤ 1

0 ≤ z ≤ 1− x2

0 ≤ y ≤ 1− x.

To obtain the dy dx dz integral we only need to change the order of the two outer
integrals, which involves studying the “shadow” of W as a region D in the xz-plane.
This region D is consists of points (x, z) with

0 ≤ x ≤ 1

0 ≤ z ≤ 1− x2.

If you draw a diagram of this region, you see that it can also be described as

0 ≤ z ≤ 1

0 ≤ x ≤
√

1− z.

This is sufficient to re-write the triple integral as∫ 1

0

∫ √
1−z

0

∫ 1−x

0

f(x, y, z)dy dx dz.

In order to get the dz dx dy integral we need to analyze the three dimensional solid W ,
by sketching a diagram. Because the two outer integrals are dx dy, we then need to
project W to find its shadow onto the xy-plane. It turns out that this shadow in the
xy plane is the region bounded by the triangle with vertices (0, 0), (1, 0) and (0, 1).
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But for the present example there happens to be a way to see this without drawing the
3D diagram. Let’s concentrate on the two inner integrals in the original triple integral,∫ 1−x2

0

∫ 1−x

0

f(x, y, z)dy dz.

We see that the bounds for these two integrals are independent of y and z. This means
that, as far as the dy dz integral is concerned, all the bounds are constants (because x
is a constant here), and we are therefore integrating over a rectangle in the yz plane.
It is therefore allowed to simply reverse these two integrals to get∫ 1−x

0

∫ 1−x2

0

f(x, y, z)dz dy.

If we do this the triple integral becomes∫ 1

0

∫ 1−x

0

∫ 1−x2

0

f(x, y, z)dz dy dx.

We now have dz on the inside, which is what we need. Now all we need to do is reverse
the order of the two outer integrals, namely the dy dx integrals. We need to sketch the
diagram of the shadow of W on the xy-plane, but we don’t need the full 3D picture.
We can see what this shadow is by looking at the outer bounds of the dz dy dx integral.
The shadow of W on the xy plane consists of points with

0 ≤ x ≤ 1

0 ≤ y ≤ 1− x.

This is the region bounded by the triangle with vertices (0, 0), (1, 0) and (0, 1). If we
slice this triangle up differently we see that it can also be described by

0 ≤ y ≤ 1

0 ≤ x ≤ 1− y.

So with these new bounds for the two outer integrals we get the dz dx dy integral as∫ 1

0

∫ 1−y

0

∫ 1−x2

0

f(x, y, z)dz dx dy.

2. The solid W in R3 is bounded by the sphere x2 + y2 + z2 = 1 and the xy-plane. The
mass density of the solid W is given by the function f(x, y, z) = 1 + x2 + y2 + z2 (in
units of mass per units of volume). Calculate the total mass of W .
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Solution. The problem is best handled by using spherical coordinates. The solid W
is then described as the collection of points (ρ, φ, θ) such that

0 ≤ ρ ≤ 1,

0 ≤ φ ≤ π/2,

0 ≤ θ ≤ 2π.

The mass density function is expressed in the (ρ, φ, θ) variables as

f(x, y, z) = 1 + x2 + y2 + z2 = 1 + ρ2.

Finally, the volume element in spherical coordinates is given by the standard formula

dV = dx dy dz = ρ2 sin φ dρ dφ dθ.

Putting it all together we obtain the iterated integral∫ 1

0

∫ π/2

0

∫ 2π

0

(1 + ρ2)ρ2 sin φ dθ dφ dρ.

This integral can be evaluated easily because (1) no functions of ρ, φ or θ appear as lower
or upper bounds in any of the three integral signs and (2) the integrand (1+ρ2)ρ2 sin φ
separates as a product of (1 + ρ2)ρ2 and sin φ, each of which is a one-variable functions
for ρ and φ respectively. In such a case the triple integral is equal to a product of three
ordinary (single) integrals,∫ 1

0

(1 + ρ2)ρ2dρ

∫ π/2

0

sin φ dφ

∫ 2π

0

1 dθ.

The calculation of these integrals is as follows.∫ 1

0

(1 + ρ2)ρ2dρ =

∫ 1

0

ρ2 + ρ4dρ =

[
1

3
ρ3 +

1

5
ρ5

]1

0

=
8

15
,∫ π/2

0

sin φ dφ = [− cos φ]π/2
0 = 1,∫ 2π

0

1 dθ = 2π.

The final result is ∫ ∫ ∫
W

f dV =
8

15
· 1 · 2π =

16

15
π.
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3. Evaluate the following integral by changing to polar coordinates,∫ 2

0

∫ √
2x−x2

0

1√
x2 + y2

dy dx.

Solution. First we analyze the region D in the xy plane over which we integrate. It
is given as

0 ≤ x ≤ 2

0 ≤ y ≤
√

2x− x2.

This is the region bounded below by the x axis (y = 0) and above by the graph
of y =

√
2x− x2, or y2 = 2x − x2. We need to convert these two curves to polar

coordinates. The positive x axis corresponds to θ = 0. The equation y2 = 2x − x2

is equivalent to x2 + y2 = 2x. Using x2 + y2 = r2 and x = r cos θ this turns into
r2 = 2r cos θ or

r = 2 cos θ.

By carefully studying the diagram of the region D, we see that θ ranges over the values
0 ≤ θ ≤ π/2 (because the entire region is contained in the first quadrant), while for
a fixed value of θ the radius r ranges over the interval 0 ≤ r ≤ 2 cos θ. We therefore
have the following bounds for the integral∫ π/2

0

∫ 2 cos θ

0

· · · dr dθ.

Secondly, we need to convert the function (the integrand) to polar coordinates. Using
x2 + y2 = r2 we find

f(x, y) =
1√

x2 + y2
=

1

r
.

Thirdly, we have to choose the correct Jacobian for the area form dA = dy dx. For
polar coordinates there is the standard formula

dA = dx dy = r dr dθ.

Assembling all the pieces we find∫ π/2

0

∫ 2 cos θ

0

1

r
r dr dθ =

∫ π/2

0

∫ 2 cos θ

0

1 dr dθ

=

∫ π/2

0

2 cos θ dθ

= [2 sin θ]π/2
0

= 2.
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4. Evaluate the integral ∫∫
D

e
x+y
x−y dA

Where D is the region bounded by the trapezoid with vertices (1, 0), (2, 0), (0,−2) and
(0,−1).

Solution:

�
�

�

�
�

�
�

�
�

x

y

D

(1,0)r (2,0)r
(0,-1) r
(0,-2) r

←−
T @

@
@

�
�

�
D∗ r (1, 1)

r(2, 2)

r(−1, 1)

r(−2, 2)

u

v

In this problem we choose the substitution

u = x + y

v = x− y

This is a linear transformation, which means that it maps parallelograms to parallel-
ograms and vertices of parallelograms to vertices of parallelograms. If we solve for
x and y. So the vertices map to vertices. This means that we have the following
correspondence:

(x, y) | (u, v)
(1, 0) | (1, 1)
(2, 0) | (2, 2)

(0,−1) | (−1, 1)
(0,−2) | (−2, 2)

The inverse transformation is obtained by solving for x and y and we will use this to
find the Jacobian

x =
u + v

2

y =
u− v

2

Using this we compute the Jacobian

∂(x, y)

∂(u, v)
=

(
1
2

1
2

1
2

−1
2

)
= −1

2
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Now the bounds for D∗ can be computed from the four vertices in the uv-plane (see
the trapezoid in the right-handside):

−v ≤ u ≤ v

1 ≤ v ≤ 2

∫ ∫
D

e
x+y
x−y dA =

∫ 2

1

∫ v

−v

e
u
v

∣∣∣∣−1

2

∣∣∣∣ dudv

=

∫ 2

1

v

2
e

u
v |u=v

u=−v dv

=

∫ 2

1

v

2
(e− e−1)dv

= (e− e−1)
v2

2
|v=2
v=1

=
3

4
(e− e−1)

5. Evaluate the integral ∫ ∫ ∫
W

(x2 + y2 + 2z) dV

where W is the region that lies below the paraboloid z = 25 − x2 − y2, inside the
cylinder x2 + y2 = 4 and above the xy-plane.

Solution:

The best way to do this problem is to switch to cylindrical coordinates.

The bounds of integration are:

0 ≤ z ≤ 25− r2

0 ≤ r ≤ 2
0 ≤ θ ≤ 2π
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Hence, ∫ ∫ ∫
W

(x2 + y2 + 2z) dV =

∫ 2π

0

∫ 2

0

∫ 25−r2

0

(r2 + 2z)r dzdrdθ

=

∫ 2π

0

∫ 2

0

∫ 25−r2

0

(r3 + 2rz) dzdrdθ

=

∫ 2π

0

∫ 2

0

(r3z + z2r)|z=25−r2

z=0 drdθ

=

∫ 2π

0

∫ 2

0

(r3(25− r2) + (25− r2)2r) drdθ

=

∫ 2π

0

∫ 2

0

r(25− r2)(r2 + 25− r2) drdθ

=

∫ 2π

0

∫ 2

0

625r − 25r3 drdθ

=

∫ 2π

0

625

2
r2 − 25

4
r4|r=2

r=0dθ

= 2π(1150)

= 2300π

6. Evaluate the integral ∫ ∫
D

30xy dA

where D is the region bounded by y = x and y = x2.

Solution: This is a type 3 region and we have a choice on the order of integration.
You should do both ways to check that indeed we do get the same answer. In this
solution I will choose the bounds

x2 ≤ y ≤ x

0 ≤ x ≤ 1
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Hence, we have ∫ 1

0

∫ x

x2

30xy dydx =

∫ 1

0

15xy2|y=x
y=x2 dx

=

∫ 1

0

15x3 − 15x5 dx

=
15

4
x4 − 15

6
x6|x=1

x=0

=
15

4
− 5

2

=
5

4
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