Exercises: Double and Triple Integrals Solutions
 Math 13, Spring 2010

1. Consider the iterated integral

$$
\int_{0}^{1} \int_{0}^{1-x^{2}} \int_{0}^{1-x} f(x, y, z) d y d z d x
$$

(a) Rewrite this integral as an equivalent iterated integral in the order $d y d x d z$.
(b) Rewrite the integral in the order $d z d x d y$.

Solution. The triple integral is an integral over the solid W in \mathbb{R}^{3} that consists of all points (x, y, z) with

$$
\begin{aligned}
& 0 \leq x \leq 1 \\
& 0 \leq z \leq 1-x^{2} \\
& 0 \leq y \leq 1-x .
\end{aligned}
$$

To obtain the $d y d x d z$ integral we only need to change the order of the two outer integrals, which involves studying the "shadow" of W as a region D in the $x z$-plane. This region D is consists of points (x, z) with

$$
\begin{aligned}
& 0 \leq x \leq 1 \\
& 0 \leq z \leq 1-x^{2} .
\end{aligned}
$$

If you draw a diagram of this region, you see that it can also be described as

$$
\begin{aligned}
& 0 \leq z \leq 1 \\
& 0 \leq x \leq \sqrt{1-z}
\end{aligned}
$$

This is sufficient to re-write the triple integral as

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-z}} \int_{0}^{1-x} f(x, y, z) d y d x d z
$$

In order to get the $d z d x d y$ integral we need to analyze the three dimensional solid W, by sketching a diagram. Because the two outer integrals are $d x d y$, we then need to project W to find its shadow onto the $x y$-plane. It turns out that this shadow in the $x y$ plane is the region bounded by the triangle with vertices $(0,0),(1,0)$ and $(0,1)$.

But for the present example there happens to be a way to see this without drawing the 3D diagram. Let's concentrate on the two inner integrals in the original triple integral,

$$
\int_{0}^{1-x^{2}} \int_{0}^{1-x} f(x, y, z) d y d z
$$

We see that the bounds for these two integrals are independent of y and z. This means that, as far as the $d y d z$ integral is concerned, all the bounds are constants (because x is a constant here), and we are therefore integrating over a rectangle in the $y z$ plane. It is therefore allowed to simply reverse these two integrals to get

$$
\int_{0}^{1-x} \int_{0}^{1-x^{2}} f(x, y, z) d z d y
$$

If we do this the triple integral becomes

$$
\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x^{2}} f(x, y, z) d z d y d x
$$

We now have $d z$ on the inside, which is what we need. Now all we need to do is reverse the order of the two outer integrals, namely the $d y d x$ integrals. We need to sketch the diagram of the shadow of W on the $x y$-plane, but we don't need the full 3D picture. We can see what this shadow is by looking at the outer bounds of the $d z d y d x$ integral. The shadow of W on the $x y$ plane consists of points with

$$
\begin{aligned}
& 0 \leq x \leq 1 \\
& 0 \leq y \leq 1-x
\end{aligned}
$$

This is the region bounded by the triangle with vertices $(0,0),(1,0)$ and $(0,1)$. If we slice this triangle up differently we see that it can also be described by

$$
\begin{aligned}
& 0 \leq y \leq 1 \\
& 0 \leq x \leq 1-y
\end{aligned}
$$

So with these new bounds for the two outer integrals we get the $d z d x d y$ integral as

$$
\int_{0}^{1} \int_{0}^{1-y} \int_{0}^{1-x^{2}} f(x, y, z) d z d x d y
$$

2. The solid W in \mathbb{R}^{3} is bounded by the sphere $x^{2}+y^{2}+z^{2}=1$ and the $x y$-plane. The mass density of the solid W is given by the function $f(x, y, z)=1+x^{2}+y^{2}+z^{2}$ (in units of mass per units of volume). Calculate the total mass of W.

Solution. The problem is best handled by using spherical coordinates. The solid W is then described as the collection of points (ρ, ϕ, θ) such that

$$
\begin{aligned}
& 0 \leq \rho \leq 1 \\
& 0 \leq \phi \leq \pi / 2 \\
& 0 \leq \theta \leq 2 \pi
\end{aligned}
$$

The mass density function is expressed in the (ρ, ϕ, θ) variables as

$$
f(x, y, z)=1+x^{2}+y^{2}+z^{2}=1+\rho^{2}
$$

Finally, the volume element in spherical coordinates is given by the standard formula

$$
d V=d x d y d z=\rho^{2} \sin \phi d \rho d \phi d \theta
$$

Putting it all together we obtain the iterated integral

$$
\int_{0}^{1} \int_{0}^{\pi / 2} \int_{0}^{2 \pi}\left(1+\rho^{2}\right) \rho^{2} \sin \phi d \theta d \phi d \rho
$$

This integral can be evaluated easily because (1) no functions of ρ, ϕ or θ appear as lower or upper bounds in any of the three integral signs and (2) the integrand $\left(1+\rho^{2}\right) \rho^{2} \sin \phi$ separates as a product of $\left(1+\rho^{2}\right) \rho^{2}$ and $\sin \phi$, each of which is a one-variable functions for ρ and ϕ respectively. In such a case the triple integral is equal to a product of three ordinary (single) integrals,

$$
\int_{0}^{1}\left(1+\rho^{2}\right) \rho^{2} d \rho \int_{0}^{\pi / 2} \sin \phi d \phi \int_{0}^{2 \pi} 1 d \theta
$$

The calculation of these integrals is as follows.

$$
\begin{aligned}
\int_{0}^{1}\left(1+\rho^{2}\right) \rho^{2} d \rho & =\int_{0}^{1} \rho^{2}+\rho^{4} d \rho=\left[\frac{1}{3} \rho^{3}+\frac{1}{5} \rho^{5}\right]_{0}^{1}=\frac{8}{15} \\
\int_{0}^{\pi / 2} \sin \phi d \phi & =[-\cos \phi]_{0}^{\pi / 2}=1 \\
\int_{0}^{2 \pi} 1 d \theta & =2 \pi
\end{aligned}
$$

The final result is

$$
\iiint_{W} f d V=\frac{8}{15} \cdot 1 \cdot 2 \pi=\frac{16}{15} \pi
$$

3. Evaluate the following integral by changing to polar coordinates,

$$
\int_{0}^{2} \int_{0}^{\sqrt{2 x-x^{2}}} \frac{1}{\sqrt{x^{2}+y^{2}}} d y d x
$$

Solution. First we analyze the region D in the $x y$ plane over which we integrate. It is given as

$$
\begin{aligned}
& 0 \leq x \leq 2 \\
& 0 \leq y \leq \sqrt{2 x-x^{2}}
\end{aligned}
$$

This is the region bounded below by the x axis $(y=0)$ and above by the graph of $y=\sqrt{2 x-x^{2}}$, or $y^{2}=2 x-x^{2}$. We need to convert these two curves to polar coordinates. The positive x axis corresponds to $\theta=0$. The equation $y^{2}=2 x-x^{2}$ is equivalent to $x^{2}+y^{2}=2 x$. Using $x^{2}+y^{2}=r^{2}$ and $x=r \cos \theta$ this turns into $r^{2}=2 r \cos \theta$ or

$$
r=2 \cos \theta
$$

By carefully studying the diagram of the region D, we see that θ ranges over the values $0 \leq \theta \leq \pi / 2$ (because the entire region is contained in the first quadrant), while for a fixed value of θ the radius r ranges over the interval $0 \leq r \leq 2 \cos \theta$. We therefore have the following bounds for the integral

$$
\int_{0}^{\pi / 2} \int_{0}^{2 \cos \theta} \cdots d r d \theta
$$

Secondly, we need to convert the function (the integrand) to polar coordinates. Using $x^{2}+y^{2}=r^{2}$ we find

$$
f(x, y)=\frac{1}{\sqrt{x^{2}+y^{2}}}=\frac{1}{r}
$$

Thirdly, we have to choose the correct Jacobian for the area form $d A=d y d x$. For polar coordinates there is the standard formula

$$
d A=d x d y=r d r d \theta
$$

Assembling all the pieces we find

$$
\begin{aligned}
\int_{0}^{\pi / 2} \int_{0}^{2 \cos \theta} \frac{1}{r} r d r d \theta & =\int_{0}^{\pi / 2} \int_{0}^{2 \cos \theta} 1 d r d \theta \\
& =\int_{0}^{\pi / 2} 2 \cos \theta d \theta \\
& =[2 \sin \theta]_{0}^{\pi / 2} \\
& =2
\end{aligned}
$$

4. Evaluate the integral

$$
\iint_{D} e^{\frac{x+y}{x-y}} d A
$$

Where D is the region bounded by the trapezoid with vertices $(1,0),(2,0),(0,-2)$ and $(0,-1)$.

Solution:

In this problem we choose the substitution

$$
\begin{aligned}
& u=x+y \\
& v=x-y
\end{aligned}
$$

This is a linear transformation, which means that it maps parallelograms to parallelograms and vertices of parallelograms to vertices of parallelograms. If we solve for x and y. So the vertices map to vertices. This means that we have the following correspondence:

(x, y)	(u, v)
$(1,0)$	$(1,1)$
$(2,0)$	$(2,2)$
$(0,-1)$	$(-1,1)$
$(0,-2)$	$(-2,2)$

The inverse transformation is obtained by solving for x and y and we will use this to find the Jacobian

$$
\begin{aligned}
& x=\frac{u+v}{2} \\
& y=\frac{u-v}{2}
\end{aligned}
$$

Using this we compute the Jacobian

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{-1}{2}
\end{array}\right)=-\frac{1}{2}
$$

Now the bounds for D^{*} can be computed from the four vertices in the $u v$-plane (see the trapezoid in the right-handside):

$$
\begin{aligned}
-v & \leq u \leq v \\
1 & \leq v \leq 2 \\
\iint_{D} e^{\frac{x+y}{x-y}} d A & =\int_{1}^{2} \int_{-v}^{v} e^{\frac{u}{v}}\left|-\frac{1}{2}\right| d u d v \\
& =\left.\int_{1}^{2} \frac{v}{2} e^{\frac{u}{v}}\right|_{u=-v} ^{u=v} d v \\
& =\int_{1}^{2} \frac{v}{2}\left(e-e^{-1}\right) d v \\
& =\left.\left(e-e^{-1}\right) \frac{v^{2}}{2}\right|_{v=1} ^{v=2} \\
& =\frac{3}{4}\left(e-e^{-1}\right)
\end{aligned}
$$

5. Evaluate the integral

$$
\iiint_{W}\left(x^{2}+y^{2}+2 z\right) d V
$$

where W is the region that lies below the paraboloid $z=25-x^{2}-y^{2}$, inside the cylinder $x^{2}+y^{2}=4$ and above the $x y$-plane.

Solution:

The best way to do this problem is to switch to cylindrical coordinates.
The bounds of integration are:

$$
\begin{aligned}
& 0 \leq z \leq 25-r^{2} \\
& 0 \leq r \leq 2 \\
& 0 \leq \theta \leq 2 \pi
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\iiint_{W}\left(x^{2}+y^{2}+2 z\right) d V & =\int_{0}^{2 \pi} \int_{0}^{2} \int_{0}^{25-r^{2}}\left(r^{2}+2 z\right) r d z d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{2} \int_{0}^{25-r^{2}}\left(r^{3}+2 r z\right) d z d r d \theta \\
& =\left.\int_{0}^{2 \pi} \int_{0}^{2}\left(r^{3} z+z^{2} r\right)\right|_{z=0} ^{z=25-r^{2}} d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{2}\left(r^{3}\left(25-r^{2}\right)+\left(25-r^{2}\right)^{2} r\right) d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{2} r\left(25-r^{2}\right)\left(r^{2}+25-r^{2}\right) d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{2} 625 r-25 r^{3} d r d \theta \\
& =\int_{0}^{2 \pi} \frac{625}{2} r^{2}-\left.\frac{25}{4} r^{4}\right|_{r=0} ^{r=2} d \theta \\
& =2 \pi(1150) \\
& =2300 \pi
\end{aligned}
$$

6. Evaluate the integral

$$
\iint_{D} 30 x y d A
$$

where D is the region bounded by $y=x$ and $y=x^{2}$.
Solution: This is a type 3 region and we have a choice on the order of integration. You should do both ways to check that indeed we do get the same answer. In this solution I will choose the bounds

$$
\begin{array}{r}
x^{2} \leq y \leq x \\
0 \leq x \leq 1
\end{array}
$$

Hence, we have

$$
\begin{aligned}
\int_{0}^{1} \int_{x^{2}}^{x} 30 x y d y d x & =\left.\int_{0}^{1} 15 x y^{2}\right|_{y=x^{2}} ^{y=x} d x \\
& =\int_{0}^{1} 15 x^{3}-15 x^{5} d x \\
& =\frac{15}{4} x^{4}-\left.\frac{15}{6} x^{6}\right|_{x=0} ^{x=1} \\
& =\frac{15}{4}-\frac{5}{2} \\
& =\frac{5}{4}
\end{aligned}
$$

