Math 128: Lecture 9

April 14, 2014

1. The adjoint action of \mathfrak{g}_{α} sends \mathfrak{g}_{β} to $\mathfrak{g}_{\alpha+\beta}$.
2. If $x_{\alpha} \in g_{\alpha}(\alpha \neq 0)$, then x_{α} is nilpotent.
3. If $\alpha \neq-\beta$, then $\left\langle\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}\right\rangle=0$.
4. (Symmetry) If $\alpha \in R$, then $-\alpha \in R$.
5. The set $\left\{h_{\alpha} \mid \alpha \in R\right\}$ spans \mathfrak{h}, and so R spans \mathfrak{h}^{*}.
6. If $x_{\alpha} \in \mathfrak{g}_{\alpha}$ and $y_{\alpha} \in \mathfrak{g}_{-\alpha}$ then $\left[x_{\alpha}, y_{\alpha}\right]=\left\langle x_{\alpha}, y_{\alpha}\right\rangle h_{\alpha}$. Further, there is some y_{α} for which $\left\langle x_{\alpha}, y_{\alpha}\right\rangle \neq 0$, so $\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}\right]=\mathbb{C} h_{\alpha}$.
7. For all $\alpha \in R,\left\langle h_{\alpha}, h_{\alpha}\right\rangle \neq 0$.
8. Every non-zero $x_{\alpha} \in \mathfrak{g}_{\alpha}$ is part of an $\mathfrak{s l}_{2}$-triple,

$$
\mathfrak{s}_{\alpha}=\left\langle x_{\alpha}, y_{\alpha}, h_{\alpha^{\vee}}\right\rangle, \quad \text { with } \quad y_{\alpha} \in \mathfrak{g}_{-\alpha} \text { and } h_{\alpha^{\vee}}=\frac{2 h_{\alpha}}{\left\langle h_{\alpha}, h_{\alpha}\right\rangle} .
$$

9. If $\alpha \in R$ and $c \alpha \in R$ for some $c \in \mathbb{C}^{\times}$, then $c= \pm 1$.
10. For $\alpha \neq 0, \mathfrak{g}_{\alpha}=0$ or \mathfrak{g}_{α} is one-dimensional. So if \langle,$\rangle is the$ Killing form, then for any $h_{1}, h_{2} \in \mathfrak{h}$,

$$
\left\langle h_{1}, h_{2}\right\rangle=\sum_{\alpha \in R} \alpha\left(h_{1}\right) \alpha\left(h_{2}\right)
$$

6. If $x_{\alpha} \in \mathfrak{g}_{\alpha}$ and $y_{\alpha} \in \mathfrak{g}_{-\alpha}$ then $\left[x_{\alpha}, y_{\alpha}\right]=\left\langle x_{\alpha}, y_{\alpha}\right\rangle h_{\alpha}$. Further, there is some y_{α} for which $\left\langle x_{\alpha}, y_{\alpha}\right\rangle \neq 0$, so $\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}\right]=\mathbb{C} h_{\alpha}$.
7. For all $\alpha \in R,\left\langle h_{\alpha}, h_{\alpha}\right\rangle \neq 0$.
8. Every non-zero $x_{\alpha} \in \mathfrak{g}_{\alpha}$ is part of an $\mathfrak{s l}_{2}$-triple,

$$
\mathfrak{s}_{\alpha}=\left\langle x_{\alpha}, y_{\alpha}, h_{\alpha} \vee\right\rangle, \quad \text { with } \quad y_{\alpha} \in \mathfrak{g}_{-\alpha} \text { and } h_{\alpha \vee}=\frac{2 h_{\alpha}}{\left\langle h_{\alpha}, h_{\alpha}\right\rangle} .
$$

9. If $\alpha \in R$ and $c \alpha \in R$ for some $c \in \mathbb{C}^{\times}$, then $c= \pm 1$.
10. For $\alpha \neq 0, \mathfrak{g}_{\alpha}=0$ or \mathfrak{g}_{α} is one-dimensional. So if \langle,$\rangle is the$ Killing form, then for any $h_{1}, h_{2} \in \mathfrak{h}$,

$$
\left\langle h_{1}, h_{2}\right\rangle=\sum_{\alpha \in R} \alpha\left(h_{1}\right) \alpha\left(h_{2}\right) .
$$

11. For $\alpha, \beta \in R$,
(a) $\beta\left(h_{\alpha \vee}\right) \in \mathbb{Z}$,
(b) $\beta-\beta\left(h_{\alpha} \vee\right) \alpha \in R$, and
(c) if $\beta \neq \pm \alpha$, and a and b are the largest non-negative integers such that

$$
\beta-a \alpha \in R \quad \text { and } \beta+b \alpha \in R,
$$

then $\beta+i \alpha \in R$ for all $-a \leq i \leq b$ and $\beta\left(h_{\alpha \vee}\right)=a-b$.
9. If $\alpha \in R$ and $c \alpha \in R$ for some $c \in \mathbb{C}^{\times}$, then $c= \pm 1$.
10. For $\alpha \neq 0, \mathfrak{g}_{\alpha}=0$ or \mathfrak{g}_{α} is one-dimensional. So if \langle,$\rangle is the$ Killing form, then for any $h_{1}, h_{2} \in \mathfrak{h}$,

$$
\left\langle h_{1}, h_{2}\right\rangle=\sum_{\alpha \in R} \alpha\left(h_{1}\right) \alpha\left(h_{2}\right)
$$

11. For $\alpha, \beta \in R$,
(a) $\beta\left(h_{\alpha} \vee\right) \in \mathbb{Z}$,
(b) $\beta-\beta\left(h_{\alpha \vee}\right) \alpha \in R$, and
(c) if $\beta \neq \pm \alpha$, and a and b are the largest non-negative integers such that

$$
\beta-a \alpha \in R \quad \text { and } \beta+b \alpha \in R,
$$

then $\beta+i \alpha \in R$ for all $-a \leq i \leq b$ and $\beta\left(h_{\alpha \vee}\right)=a-b$.
12. (Rationality) Let $B \subseteq R$ be a base for R.
(a) $R \subseteq \mathbb{Q} B$.
(b) For any $\alpha, \beta \in R,\langle\alpha, \beta\rangle \in \mathbb{Q}$.
(c) The restriction of \langle,$\rangle to \mathfrak{h}_{\mathbb{Q}}^{*}=\mathbb{Q} B$ and $\mathfrak{h}_{\mathbb{R}}^{*}=\mathbb{R} \otimes_{\mathbb{Q}} \mathfrak{h}_{\mathbb{Q}}^{*}$ is positive definite (so that $\mathfrak{h}_{\mathbb{Q}}^{*}, \mathfrak{h}_{\mathbb{R}}^{*}, \mathfrak{h}_{\mathbb{Q}}$, and $\mathfrak{h}_{\mathbb{R}}$ are all Euclidean spaces with inner product $\langle\rangle$,$) .$

The Weyl group

Let \mathfrak{h}_{α} be the hyperplane in the real Euclidean space $\mathfrak{h}_{\mathbb{R}}^{*}$ given by

$$
\mathfrak{h}_{\alpha}=\left\{\lambda \in \mathfrak{h}_{\mathbb{R}}^{*} \mid\langle\lambda, \alpha\rangle=0\right\} .
$$

(Notice that $\mathfrak{h}_{\alpha}=\mathfrak{h}_{-\alpha}$.)

The Weyl group

Let \mathfrak{h}_{α} be the hyperplane in the real Euclidean space $\mathfrak{h}_{\mathbb{R}}^{*}$ given by

$$
\mathfrak{h}_{\alpha}=\left\{\lambda \in \mathfrak{h}_{\mathbb{R}}^{*} \mid\langle\lambda, \alpha\rangle=0\right\} .
$$

(Notice that $\mathfrak{h}_{\alpha}=\mathfrak{h}_{-\alpha}$.)
Then σ_{α} extends to a map on $\mathfrak{h}_{\mathbb{R}}^{*}$, given by

$$
\begin{aligned}
\sigma_{\alpha}: \mathfrak{h}_{\mathbb{R}}^{*} & \rightarrow \mathfrak{b}_{\mathbb{R}}^{*} \\
\lambda & \mapsto \lambda-2 \frac{\langle\alpha, \lambda\rangle}{\langle\alpha, \alpha\rangle} \alpha,
\end{aligned}
$$

which geometrically reflects weights across the hyperplane \mathfrak{h}_{α}.

The Weyl group

Let \mathfrak{h}_{α} be the hyperplane in the real Euclidean space $\mathfrak{h}_{\mathbb{R}}^{*}$ given by

$$
\mathfrak{h}_{\alpha}=\left\{\lambda \in \mathfrak{h}_{\mathbb{R}}^{*} \mid\langle\lambda, \alpha\rangle=0\right\} .
$$

(Notice that $\mathfrak{h}_{\alpha}=\mathfrak{h}_{-\alpha}$.)
Then σ_{α} extends to a map on $\mathfrak{h}_{\mathbb{R}}^{*}$, given by

$$
\begin{aligned}
\sigma_{\alpha}: \mathfrak{b}_{\mathbb{R}}^{*} & \rightarrow \mathfrak{b}_{\mathbb{R}}^{*} \\
\lambda & \mapsto \lambda-2 \frac{\langle\alpha, \lambda\rangle}{\langle\alpha, \alpha\rangle} \alpha,
\end{aligned}
$$

which geometrically reflects weights across the hyperplane \mathfrak{h}_{α}.
The group W generated by $\left\{\sigma_{\alpha} \mid \alpha \in R^{+}\right\}$is called the Weyl group associated to \mathfrak{g}.

