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1. The adjoint action of gα sends gβ to gα+β.

2. If xα ∈ gα (α 6= 0), then xα is nilpotent.

3. If α 6= −β, then 〈gα, gβ〉 = 0.

4. (Symmetry) If α ∈ R, then −α ∈ R.

5. The set {hα | α ∈ R} spans h, and so R spans h∗.

6. If xα ∈ gα and yα ∈ g−α then [xα, yα] = 〈xα, yα〉hα.
Further, there is some yα for which 〈xα, yα〉 6= 0, so
[gα, g−α] = Chα.

7. For all α ∈ R, 〈hα, hα〉 6= 0.

8. Every non-zero xα ∈ gα is part of an sl2-triple,

sα = 〈xα, yα, hα∨〉, with yα ∈ g−α and hα∨ =
2hα
〈hα, hα〉

.

9. If α ∈ R and cα ∈ R for some c ∈ C×, then c = ±1.

10. For α 6= 0, gα = 0 or gα is one-dimensional. So if 〈, 〉 is the
Killing form, then for any h1, h2 ∈ h,

〈h1, h2〉 =
∑
α∈R

α(h1)α(h2).
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11. For α, β ∈ R,
(a) β(hα∨) ∈ Z,
(b) β − β(hα∨)α ∈ R, and
(c) if β 6= ±α, and a and b are the largest non-negative integers

such that
β − aα ∈ R and β + bα ∈ R,

then β + iα ∈ R for all −a ≤ i ≤ b and β(hα∨) = a− b.
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12. (Rationality) Let B ⊆ R be a base for R.

(a) R ⊆ QB.
(b) For any α, β ∈ R, 〈α, β〉 ∈ Q.
(c) The restriction of 〈, 〉 to h∗Q = QB and h∗R = R⊗Q h∗Q is

positive definite (so that h∗Q, h∗R, hQ, and hR are all Euclidean
spaces with inner product 〈, 〉).



The Weyl group

Let hα be the hyperplane in the real Euclidean space h∗R given by

hα = {λ ∈ h∗R | 〈λ, α〉 = 0}.

(Notice that hα = h−α.)

Then σα extends to a map on h∗R, given by

σα :h∗R → h∗R

λ 7→ λ− 2
〈α, λ〉
〈α, α〉

α,

which geometrically reflects weights across the hyperplane hα.

The group W generated by {σα | α ∈ R+} is called the Weyl
group associated to g.
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