Math 128: Lecture 9

April 14, 2014

- 1. The adjoint action of \mathfrak{g}_{α} sends \mathfrak{g}_{β} to $\mathfrak{g}_{\alpha+\beta}$.
- 2. If $x_{\alpha} \in g_{\alpha} \ (\alpha \neq 0)$, then x_{α} is nilpotent.
- 3. If $\alpha \neq -\beta$, then $\langle \mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta} \rangle = 0$.
- 4. (Symmetry) If $\alpha \in R$, then $-\alpha \in R$.
- 5. The set $\{h_{\alpha} \mid \alpha \in R\}$ spans \mathfrak{h} , and so R spans \mathfrak{h}^* .
- 6. If $x_{\alpha} \in \mathfrak{g}_{\alpha}$ and $y_{\alpha} \in \mathfrak{g}_{-\alpha}$ then $[x_{\alpha}, y_{\alpha}] = \langle x_{\alpha}, y_{\alpha} \rangle h_{\alpha}$. Further, there is some y_{α} for which $\langle x_{\alpha}, y_{\alpha} \rangle \neq 0$, so $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}] = \mathbb{C}h_{\alpha}$.

7. For all
$$\alpha \in R$$
, $\langle h_{\alpha}, h_{\alpha} \rangle \neq 0$.

8. Every non-zero $x_{\alpha} \in \mathfrak{g}_{\alpha}$ is part of an \mathfrak{sl}_2 -triple,

$$\mathfrak{s}_{\alpha} = \langle x_{\alpha}, y_{\alpha}, h_{\alpha^{\vee}} \rangle, \quad \text{ with } \quad y_{\alpha} \in \mathfrak{g}_{-\alpha} \text{ and } h_{\alpha^{\vee}} = \frac{2h_{\alpha}}{\langle h_{\alpha}, h_{\alpha} \rangle}.$$

9. If $\alpha \in R$ and $c\alpha \in R$ for some $c \in \mathbb{C}^{\times}$, then $c = \pm 1$.

10. For $\alpha \neq 0$, $\mathfrak{g}_{\alpha} = 0$ or \mathfrak{g}_{α} is one-dimensional. So if \langle, \rangle is the Killing form, then for any $h_1, h_2 \in \mathfrak{h}$,

$$\langle h_1, h_2 \rangle = \sum_{\alpha \in R} \alpha(h_1) \alpha(h_2).$$

- 6. If $x_{\alpha} \in \mathfrak{g}_{\alpha}$ and $y_{\alpha} \in \mathfrak{g}_{-\alpha}$ then $[x_{\alpha}, y_{\alpha}] = \langle x_{\alpha}, y_{\alpha} \rangle h_{\alpha}$. Further, there is some y_{α} for which $\langle x_{\alpha}, y_{\alpha} \rangle \neq 0$, so $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}] = \mathbb{C}h_{\alpha}$.
- 7. For all $\alpha \in R$, $\langle h_{\alpha}, h_{\alpha} \rangle \neq 0$.
- 8. Every non-zero $x_{\alpha} \in \mathfrak{g}_{\alpha}$ is part of an \mathfrak{sl}_2 -triple,

$$\mathfrak{s}_{\alpha} = \langle x_{\alpha}, y_{\alpha}, h_{\alpha^{\vee}} \rangle, \quad \text{ with } \quad y_{\alpha} \in \mathfrak{g}_{-\alpha} \text{ and } h_{\alpha^{\vee}} = \frac{2h_{\alpha}}{\langle h_{\alpha}, h_{\alpha} \rangle}.$$

9. If $\alpha \in R$ and $c\alpha \in R$ for some $c \in \mathbb{C}^{\times}$, then $c = \pm 1$. 10. For $\alpha \neq 0$, $\mathfrak{g}_{\alpha} = 0$ or \mathfrak{g}_{α} is one-dimensional. So if \langle, \rangle is the

Killing form, then for any $h_1, h_2 \in \mathfrak{h}$,

$$\langle h_1, h_2 \rangle = \sum_{\alpha \in R} \alpha(h_1) \alpha(h_2).$$

11. For α, β ∈ R,
(a) β(h_{α[∨]}) ∈ Z,
(b) β − β(h_{α[∨]})α ∈ R, and
(c) if β ≠ ±α, and a and b are the largest non-negative integers such that

then $\beta + i\alpha \in R$ for all $-a \leq i \leq b$ and $\beta(h_{\alpha^{\vee}}) = a - b$.

- 9. If $\alpha \in R$ and $c\alpha \in R$ for some $c \in \mathbb{C}^{\times}$, then $c = \pm 1$.
- 10. For $\alpha \neq 0$, $\mathfrak{g}_{\alpha} = 0$ or \mathfrak{g}_{α} is one-dimensional. So if \langle, \rangle is the Killing form, then for any $h_1, h_2 \in \mathfrak{h}$,

$$\langle h_1, h_2 \rangle = \sum_{\alpha \in R} \alpha(h_1) \alpha(h_2).$$

11. For $\alpha, \beta \in R$, (a) $\beta(h_{\alpha^{\vee}}) \in \mathbb{Z}$, (b) $\beta - \beta(h_{\alpha^{\vee}})\alpha \in R$, and (c) if $\beta \neq \pm \alpha$, and a and b are the largest non-negative integers such that

 $\beta - a\alpha \in R$ and $\beta + b\alpha \in R$,

then $\beta + i\alpha \in R$ for all $-a \leq i \leq b$ and $\beta(h_{\alpha^{\vee}}) = a - b$.

- 12. (Rationality) Let $B \subseteq R$ be a base for R.
 - (a) $R \subseteq \mathbb{Q}B$.
 - (b) For any $\alpha, \beta \in R$, $\langle \alpha, \beta \rangle \in \mathbb{Q}$.
 - (c) The restriction of ⟨, ⟩ to 𝔥^{*}_Q = QB and 𝔥^{*}_R = ℝ ⊗_Q 𝔥^{*}_Q is positive definite (so that 𝔥^{*}_Q, 𝔥^{*}_R, 𝔥_Q, and 𝔥_R are all Euclidean spaces with inner product ⟨, ⟩).

The Weyl group

Let \mathfrak{h}_α be the hyperplane in the real Euclidean space $\mathfrak{h}_{\mathbb{R}}^*$ given by

$$\mathfrak{h}_{\alpha} = \{ \lambda \in \mathfrak{h}_{\mathbb{R}}^* \mid \langle \lambda, \alpha \rangle = 0 \}.$$

(Notice that $\mathfrak{h}_{\alpha} = \mathfrak{h}_{-\alpha}$.)

The Weyl group

Let \mathfrak{h}_α be the hyperplane in the real Euclidean space $\mathfrak{h}_{\mathbb{R}}^*$ given by

$$\mathfrak{h}_{\alpha} = \{ \lambda \in \mathfrak{h}_{\mathbb{R}}^* \mid \langle \lambda, \alpha \rangle = 0 \}.$$

(Notice that $\mathfrak{h}_{\alpha} = \mathfrak{h}_{-\alpha}$.)

Then σ_{α} extends to a map on $\mathfrak{h}_{\mathbb{R}}^*$, given by

$$\sigma_{\alpha} : \mathfrak{h}_{\mathbb{R}}^{*} \to \mathfrak{h}_{\mathbb{R}}^{*}$$
$$\lambda \mapsto \lambda - 2 \frac{\langle \alpha, \lambda \rangle}{\langle \alpha, \alpha \rangle} \alpha,$$

which geometrically reflects weights across the hyperplane \mathfrak{h}_{α} .

The Weyl group

Let \mathfrak{h}_α be the hyperplane in the real Euclidean space $\mathfrak{h}_{\mathbb{R}}^*$ given by

$$\mathfrak{h}_{\alpha} = \{ \lambda \in \mathfrak{h}_{\mathbb{R}}^* \mid \langle \lambda, \alpha \rangle = 0 \}.$$

(Notice that $\mathfrak{h}_{\alpha} = \mathfrak{h}_{-\alpha}$.)

Then σ_{α} extends to a map on $\mathfrak{h}_{\mathbb{R}}^*$, given by

$$\begin{split} \sigma_{\alpha} &: \mathfrak{h}_{\mathbb{R}}^{*} \to \mathfrak{h}_{\mathbb{R}}^{*} \\ \lambda &\mapsto \lambda - 2 \frac{\langle \alpha, \lambda \rangle}{\langle \alpha, \alpha \rangle} \alpha, \end{split}$$

which geometrically reflects weights across the hyperplane \mathfrak{h}_{α} . The group W generated by $\{\sigma_{\alpha} \mid \alpha \in R^+\}$ is called the *Weyl* group associated to \mathfrak{g} .