Math 128: Lecture 8

April 9, 2014

For $\alpha \in R$, $\mathfrak{g}_{\alpha} = \{x \in \mathfrak{g} \mid \mathrm{ad}_{h}(x) = \alpha(h)x\} \neq 0$. Let \langle , \rangle be the Killing form. Recall, invariant means $\langle [x, y], z \rangle = -\langle y, [x, z] \rangle$.

- 1. The adjoint action of \mathfrak{g}_{α} sends \mathfrak{g}_{β} to $\mathfrak{g}_{\alpha+\beta}$.
- 2. If $x_{\alpha} \in g_{\alpha}$ ($\alpha \neq 0$), then x_{α} is nilpotent.
- 3. If $\alpha \neq -\beta$, then $\langle \mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta} \rangle = 0$.
- 4. (Symmetry) If $\alpha \in R$, then $-\alpha \in R$.
- 5. The set $\{h_{\alpha} \mid \alpha \in R\}$ spans \mathfrak{h} , and so R spans \mathfrak{h}^* .
- 6. If $x_{\alpha} \in \mathfrak{g}_{\alpha}$ and $y_{\alpha} \in \mathfrak{g}_{-\alpha}$ then $[x_{\alpha}, y_{\alpha}] = \langle x_{\alpha}, y_{\alpha} \rangle h_{\alpha}$. Further, there is some y_{α} for which $\langle x_{\alpha}, y_{\alpha} \rangle \neq 0$, so $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}] = \mathbb{C}h_{\alpha}$.
- 7. For all $\alpha \in R$, $\langle h_{\alpha}, h_{\alpha} \rangle \neq 0$.
- 8. Every non-zero $x_{\alpha} \in \mathfrak{g}_{\alpha}$ is part of an \mathfrak{sl}_2 -triple,

$$\mathfrak{s}_{\alpha} = \langle x_{\alpha}, y_{\alpha}, h_{\alpha^{\vee}} \rangle, \quad \text{ with } \quad y_{\alpha} \in \mathfrak{g}_{-\alpha} \text{ and } h_{\alpha^{\vee}} = \frac{2h_{\alpha}}{\langle h_{\alpha}, h_{\alpha} \rangle}.$$

For $\alpha \in R$, $\mathfrak{g}_{\alpha} = \{x \in \mathfrak{g} \mid \mathrm{ad}_{h}(x) = \alpha(h)x\} \neq 0$. Let \langle , \rangle be the Killing form. Recall, invariant means $\langle [x, y], z \rangle = -\langle y, [x, z] \rangle$.

- 1. The adjoint action of \mathfrak{g}_{α} sends \mathfrak{g}_{β} to $\mathfrak{g}_{\alpha+\beta}$.
- 2. If $x_{\alpha} \in g_{\alpha}$ ($\alpha \neq 0$), then x_{α} is nilpotent.
- 3. If $\alpha \neq -\beta$, then $\langle \mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta} \rangle = 0$.
- 4. (Symmetry) If $\alpha \in R$, then $-\alpha \in R$.
- 5. The set $\{h_{\alpha} \mid \alpha \in R\}$ spans \mathfrak{h} , and so R spans \mathfrak{h}^* .
- 6. If $x_{\alpha} \in \mathfrak{g}_{\alpha}$ and $y_{\alpha} \in \mathfrak{g}_{-\alpha}$ then $[x_{\alpha}, y_{\alpha}] = \langle x_{\alpha}, y_{\alpha} \rangle h_{\alpha}$. Further, there is some y_{α} for which $\langle x_{\alpha}, y_{\alpha} \rangle \neq 0$, so $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}] = \mathbb{C}h_{\alpha}$.
- 7. For all $\alpha \in R$, $\langle h_{\alpha}, h_{\alpha} \rangle \neq 0$.
- 8. Every non-zero $x_{\alpha} \in \mathfrak{g}_{\alpha}$ is part of an \mathfrak{sl}_2 -triple,

$$\mathfrak{s}_{\alpha} = \langle x_{\alpha}, y_{\alpha}, h_{\alpha^{\vee}} \rangle, \quad \text{ with } \quad y_{\alpha} \in \mathfrak{g}_{-\alpha} \text{ and } h_{\alpha^{\vee}} = \frac{2h_{\alpha}}{\langle h_{\alpha}, h_{\alpha} \rangle}.$$

9. If $\alpha \in R$ and $c\alpha \in R$ for some $c \in \mathbb{C}^{\times}$, then $c = \pm 1$.

For $\alpha \in R$, $\mathfrak{g}_{\alpha} = \{x \in \mathfrak{g} \mid \mathrm{ad}_{h}(x) = \alpha(h)x\} \neq 0$. Let \langle , \rangle be the Killing form. Recall, invariant means $\langle [x, y], z \rangle = -\langle y, [x, z] \rangle$.

- 1. The adjoint action of \mathfrak{g}_{α} sends \mathfrak{g}_{β} to $\mathfrak{g}_{\alpha+\beta}$.
- 2. If $x_{\alpha} \in g_{\alpha}$ ($\alpha \neq 0$), then x_{α} is nilpotent.
- 3. If $\alpha \neq -\beta$, then $\langle \mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta} \rangle = 0$.
- 4. (Symmetry) If $\alpha \in R$, then $-\alpha \in R$.
- 5. The set $\{h_{\alpha} \mid \alpha \in R\}$ spans \mathfrak{h} , and so R spans \mathfrak{h}^* .
- 6. If $x_{\alpha} \in \mathfrak{g}_{\alpha}$ and $y_{\alpha} \in \mathfrak{g}_{-\alpha}$ then $[x_{\alpha}, y_{\alpha}] = \langle x_{\alpha}, y_{\alpha} \rangle h_{\alpha}$. Further, there is some y_{α} for which $\langle x_{\alpha}, y_{\alpha} \rangle \neq 0$, so $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}] = \mathbb{C}h_{\alpha}$.
- 7. For all $\alpha \in R$, $\langle h_{\alpha}, h_{\alpha} \rangle \neq 0$.
- 8. Every non-zero $x_{\alpha} \in \mathfrak{g}_{\alpha}$ is part of an \mathfrak{sl}_2 -triple,

$$\mathfrak{s}_{\alpha} = \langle x_{\alpha}, y_{\alpha}, h_{\alpha^{\vee}} \rangle, \quad \text{ with } \quad y_{\alpha} \in \mathfrak{g}_{-\alpha} \text{ and } h_{\alpha^{\vee}} = \frac{2h_{\alpha}}{\langle h_{\alpha}, h_{\alpha} \rangle}.$$

9. If $\alpha \in R$ and $c\alpha \in R$ for some $c \in \mathbb{C}^{\times}$, then $c = \pm 1$. 10. For $\alpha \neq 0$, $\mathfrak{g}_{\alpha} = 0$ or \mathfrak{g}_{α} is one-dimensional.

Each semisimple finite-dimensional complex Lie algebras ${\mathfrak g}$ admit triangular decompositions:

$$\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$$
 (as vector spaces) where $\mathfrak{n}^\pm = \bigoplus_{lpha \in R^\pm} \mathfrak{g}_lpha.$

Each semisimple finite-dimensional complex Lie algebras \mathfrak{g} admit triangular decompositions:

$$\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$$
 (as vector spaces) where $\mathfrak{n}^\pm = igoplus_{lpha \in R^\pm} \mathfrak{g}_lpha.$

Notice that while they are not ideals,

 $\mathfrak{n}^-, \quad \mathfrak{h}, \quad \mathfrak{n}^+, \quad \text{and} \quad \mathfrak{b} = \mathfrak{h} \oplus \mathfrak{n}^+$

are all subalgebras (\mathfrak{b} is called the *Borel* subalgebra).

Each semisimple finite-dimensional complex Lie algebras \mathfrak{g} admit triangular decompositions:

$$\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$$
 (as vector spaces) where $\mathfrak{n}^\pm = igoplus_{lpha \in R^\pm} \mathfrak{g}_lpha.$

Notice that while they are not ideals,

 $\mathfrak{n}^-, \quad \mathfrak{h}, \quad \mathfrak{n}^+, \quad \text{ and } \quad \mathfrak{b} = \mathfrak{h} \oplus \mathfrak{n}^+$

are all subalgebras (\mathfrak{b} is called the *Borel* subalgebra). On a triangular basis of \mathfrak{g} , for $h \in \mathfrak{h}$, ad_h is diagonal with entries

$$\begin{cases} 0 & \text{ on basis elements in } \mathfrak{h}, \text{ and} \\ \alpha(h) & \text{ on basis elements in } \mathfrak{g}_{\alpha}. \end{cases}$$

Each semisimple finite-dimensional complex Lie algebras \mathfrak{g} admit triangular decompositions:

$$\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$$
 (as vector spaces) where $\mathfrak{n}^\pm = igoplus_{lpha \in R^\pm} \mathfrak{g}_lpha.$

Notice that while they are not ideals,

$$\mathfrak{n}^-, \mathfrak{h}, \mathfrak{n}^+, \text{ and } \mathfrak{b} = \mathfrak{h} \oplus \mathfrak{n}^+$$

are all subalgebras (\mathfrak{b} is called the *Borel* subalgebra). On a triangular basis of \mathfrak{g} , for $h \in \mathfrak{h}$, ad_h is diagonal with entries

$$\begin{cases} 0 & \text{ on basis elements in } \mathfrak{h}, \text{ and} \\ \alpha(h) & \text{ on basis elements in } \mathfrak{g}_{\alpha}. \end{cases}$$

Since $\dim(\mathfrak{g}_{\alpha}) = 1$, for any $h_1, h_2 \in \mathfrak{h}$,

$$\langle h_1, h_2 \rangle = \sum_{\alpha \in R} \alpha(h_1) \alpha(h_2).$$

(Special to the Killing form!)

The triangular decomposition of ${\mathfrak g}$ induces a triangular decomposition on the enveloping algebra:

 $U\mathfrak{g} = U^- \otimes U^0 \otimes U^+ \qquad \text{with} \qquad U^\pm = U\mathfrak{n}^\pm \text{ and } U^0 = U\mathfrak{h}.$

The triangular decomposition of \mathfrak{g} induces a triangular decomposition on the enveloping algebra:

 $U\mathfrak{g} = U^- \otimes U^0 \otimes U^+ \qquad \text{with} \qquad U^\pm = U\mathfrak{n}^\pm \text{ and } U^0 = U\mathfrak{h}.$

Theorem (Birkoff-Witt)

Let $R^+=\{\alpha_1,\ldots,\alpha_\ell\}$ have base $B=\{\beta_1,\ldots,\beta_r\}$. Then there are bases

$$\begin{split} \left\{ y_{\alpha_1}^{m_{\alpha_1}} \cdots y_{\alpha_{\ell}}^{m_{\alpha_{\ell}}} \middle| y_{\alpha} \in \mathfrak{g}_{-\alpha}, m_{\alpha} \in \mathbb{Z}_{\geq 0} \right\} & \text{ of } U^-, \\ \left\{ h_{\beta_1}^{m_{\beta_1}} \cdots h_{\beta_r}^{m_{\beta_r}} \middle| m_{\beta} \in \mathbb{Z}_{\geq 0} \right\} & \text{ of } U^0, \text{ and} \\ \left\{ x_{\alpha_1}^{m_{\alpha_1}} \cdots x_{\alpha_{\ell}}^{m_{\alpha_{\ell}}} \middle| x_{\alpha} \in \mathfrak{g}_{\alpha}, m_{\alpha} \in \mathbb{Z}_{\geq 0} \right\} & \text{ of } U^+. \end{split}$$

So $U\mathfrak{g}$ has basis consisting of elements

$$y_{\alpha_1}^{m_1}\cdots y_{\alpha_\ell}^{m_\ell}h_{\beta_1}^{m_1'}\cdots h_{\beta_r}^{m_r'}x_{\alpha_1}^{m_1''}\cdots y_{\alpha_\ell}^{m_\ell''}$$

- 5. The set $\{h_{\alpha} \mid \alpha \in R\}$ spans \mathfrak{h} , and so R spans \mathfrak{h}^* .
- 6. If $x_{\alpha} \in \mathfrak{g}_{\alpha}$ and $y_{\alpha} \in \mathfrak{g}_{-\alpha}$ then $[x_{\alpha}, y_{\alpha}] = \langle x_{\alpha}, y_{\alpha} \rangle h_{\alpha}$. So $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}] = \mathbb{C}h_{\alpha}$.
- 7. For all $\alpha \in R$, $\langle h_{\alpha}, h_{\alpha} \rangle \neq 0$.
- 8. Every non-zero $x_{\alpha} \in \mathfrak{g}_{\alpha}$ is part of an \mathfrak{sl}_2 -triple,

$$\mathfrak{s}_{\alpha} = \langle x_{\alpha}, y_{\alpha}, h_{\alpha^{\vee}} \rangle, \quad \text{ with } \quad y_{\alpha} \in \mathfrak{g}_{-\alpha} \text{ and } h_{\alpha^{\vee}} = \frac{2h_{\alpha}}{\langle h_{\alpha}, h_{\alpha} \rangle}.$$

9. If $\alpha \in R$ and $c\alpha \in R$ for some $c \in \mathbb{C}^{\times}$, then $c = \pm 1$. 10. For $\alpha \neq 0$, $\mathfrak{g}_{\alpha} = 0$ or \mathfrak{g}_{α} is one-dimensional.

- 5. The set $\{h_{\alpha} \mid \alpha \in R\}$ spans \mathfrak{h} , and so R spans \mathfrak{h}^* .
- 6. If $x_{\alpha} \in \mathfrak{g}_{\alpha}$ and $y_{\alpha} \in \mathfrak{g}_{-\alpha}$ then $[x_{\alpha}, y_{\alpha}] = \langle x_{\alpha}, y_{\alpha} \rangle h_{\alpha}$. So $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}] = \mathbb{C}h_{\alpha}$.

7. For all
$$\alpha \in R$$
, $\langle h_{\alpha}, h_{\alpha} \rangle \neq 0$.

8. Every non-zero $x_{\alpha} \in \mathfrak{g}_{\alpha}$ is part of an \mathfrak{sl}_2 -triple,

$$\mathfrak{s}_{\alpha} = \langle x_{\alpha}, y_{\alpha}, h_{\alpha^{\vee}} \rangle, \quad \text{ with } \quad y_{\alpha} \in \mathfrak{g}_{-\alpha} \text{ and } h_{\alpha^{\vee}} = \frac{2h_{\alpha}}{\langle h_{\alpha}, h_{\alpha} \rangle}.$$

9. If α ∈ R and cα ∈ R for some c ∈ C[×], then c = ±1. 10. For α ≠ 0, g_α = 0 or g_α is one-dimensional. 11. For α, β ∈ R, (a) β(h_{α[∨]}) ∈ Z, (b) β − β(h_{α[∨]})α ∈ R, and (c) if β ≠ ±α, and a and b are the largest non-negative integers such that

 $\text{then }\beta+i\alpha\in R \text{ for all } -a\leq i\leq b \text{ and }\beta(h_{\alpha^\vee})=a-b.$