Math 128: Lecture 6

April 4, 2014

From last time:

Let U be a Hopf algebra with module M.

- A bilinear form is a map $\langle, \rangle : M \otimes M \to \mathbb{C}$.
- A bilinear form is symmetric if $\langle m,n\rangle = \langle n,m\rangle$ for all $x,y \in M$.
- ▶ A bilinear form is *invariant* if $\langle xm,n\rangle = \langle m,S(x)n\rangle$ for all $x \in U$.
- A bilinear form is *nondegenerate* if $\langle x, M \rangle \neq 0$ for all $x \in M$.

The Killing form on a Lie algebra \mathfrak{g} is

$$\langle x, y \rangle = \operatorname{Tr}(\operatorname{ad}_x \operatorname{ad}_y),$$

and is invariant, bilinear, and symmetric. If ${\mathfrak g}$ is semisimple, it is also nondegenerate.

If ${\mathfrak g}$ is simple, then every nondegenerate invariant bilinear symmetric (NIBS) form is a constant multiple of the Killing form.

$$egin{pmatrix} \lambda & 1 & & 0 \ & \lambda & 1 & & \ & & \ddots & & \ & & & & 1 \ 0 & & & & \lambda \end{pmatrix}$$

which are the sum of a *semisimple* (diagonalizable) part s and a *nilpotent* ($n^{\ell} = 0$ for some ℓ) part n.

which are the sum of a *semisimple* (diagonalizable) part s and a *nilpotent* ($n^{\ell} = 0$ for some ℓ) part n. Further, $s = \lambda I$ is central, so sn = ns.

which are the sum of a *semisimple* (diagonalizable) part s and a *nilpotent* ($n^{\ell} = 0$ for some ℓ) part n. Further, $s = \lambda I$ is central, so sn = ns.

So every linear transformation x can be expressed as

$$x_s$$
 semisimple,
 $x = x_s + x_n$ with x_n nilpotent, and $x_n x_s = x_s x_n$

Let \mathfrak{g} be a FDSSC Lie algebra. For $x \in \mathfrak{g}$, x is semisimple/nilpotent if ad_x is semisimple/nilpotent.

Theorem (Jordan-Chevalley decomposition)

For $x \in \mathfrak{g}$, then there exist unique x_s semisimple and x_n nilpotent satisfying

 $x = x_s + x_n$ and $[x_s, x_n] = 0.$

Further if $y \in \mathfrak{g}$ satisfies [x, y] = 0, then $[x_s, y] = [x_n, y] = 0$. (see, for example, [Hum, §4.2] or [Ser, §1.5]) Let \mathfrak{g} be a FDSSC Lie algebra. For $x \in \mathfrak{g}$, x is semisimple/nilpotent if ad_x is semisimple/nilpotent.

Theorem (Jordan-Chevalley decomposition)

For $x \in \mathfrak{g}$, then there exist unique x_s semisimple and x_n nilpotent satisfying

 $x = x_s + x_n$ and $[x_s, x_n] = 0.$

Further if $y \in \mathfrak{g}$ satisfies [x, y] = 0, then $[x_s, y] = [x_n, y] = 0$. (see, for example, [Hum, §4.2] or [Ser, §1.5])

Theorem (Jasobson-Morozov)

If x is a nilpotent element of a finite-dimensional complex semisimple Lie algebra g, then there exist nilpotent y and semisimple h in g such that

$$[x, y] = h,$$
 $[h, x] = 2x,$ $[h, y] = -2y.$

This choice is relatively unique (with some changes in constants). We call $\{x, y, h\}$ an \mathfrak{sl}_2 triple.

Some facts about Cartans: (see for example [Ser, Ch. III])

1. Cartan subalgebras are generated by taking a (nice) semisimple element h and setting

 $\mathfrak{h} = \{g \in \mathfrak{g} \mid \mathrm{ad}_h(g) = 0\}$

Some facts about Cartans: (see for example [Ser, Ch. III])

1. Cartan subalgebras are generated by taking a (nice) semisimple element h and setting

 $\mathfrak{h} = \{g \in \mathfrak{g} \mid \mathrm{ad}_h(g) = 0\}$

2. Cartan subalgebras exist and are unique up to inner automorphisms.

Some facts about Cartans: (see for example [Ser, Ch. III])

1. Cartan subalgebras are generated by taking a (nice) semisimple element \boldsymbol{h} and setting

$$\mathfrak{h} = \{g \in \mathfrak{g} \mid \mathrm{ad}_h(g) = 0\}$$

- 2. Cartan subalgebras exist and are unique up to inner automorphisms.
- 3. The centralizer of \mathfrak{h} is \mathfrak{h} .

Some facts about Cartans: (see for example [Ser, Ch. III])

1. Cartan subalgebras are generated by taking a (nice) semisimple element \boldsymbol{h} and setting

$$\mathfrak{h} = \{g \in \mathfrak{g} \mid \mathrm{ad}_h(g) = 0\}$$

- 2. Cartan subalgebras exist and are unique up to inner automorphisms.
- 3. The centralizer of \mathfrak{h} is \mathfrak{h} .
- 4. All elements of \mathfrak{h} are semisimple.

Some facts about Cartans: (see for example [Ser, Ch. III])

1. Cartan subalgebras are generated by taking a (nice) semisimple element \boldsymbol{h} and setting

 $\mathfrak{h} = \{g \in \mathfrak{g} \mid \mathrm{ad}_h(g) = 0\}$

- 2. Cartan subalgebras exist and are unique up to inner automorphisms.
- 3. The centralizer of \mathfrak{h} is \mathfrak{h} .
- 4. All elements of \mathfrak{h} are semisimple.
- 5. The restriction of the Killing form to \mathfrak{h} is non-degenerate.

Some facts about Cartans: (see for example [Ser, Ch. III])

1. Cartan subalgebras are generated by taking a (nice) semisimple element \boldsymbol{h} and setting

 $\mathfrak{h} = \{g \in \mathfrak{g} \mid \mathrm{ad}_h(g) = 0\}$

- 2. Cartan subalgebras exist and are unique up to inner automorphisms.
- 3. The centralizer of \mathfrak{h} is \mathfrak{h} .
- 4. All elements of \mathfrak{h} are semisimple.
- 5. The restriction of the Killing form to \mathfrak{h} is non-degenerate.

The rank of a semisimple Lie algebra is defined by

 $\operatorname{rank}(\mathfrak{g}) = \dim(\mathfrak{h}).$

The weights of a Cartan \mathfrak{h} is the dual set $\mathfrak{h}^* = \{\mu : \mathfrak{h} \to \mathbb{C}\}.$

The weights of a Cartan \mathfrak{h} is the dual set $\mathfrak{h}^* = \{\mu : \mathfrak{h} \to \mathbb{C}\}$. Let $\mathfrak{g}_{\alpha} = \{g \in \mathfrak{g} \mid \mathrm{ad}_h(x) = \alpha(h)x\}$. The set of weights $R = \{\alpha \in \mathfrak{h}^* \mid \alpha \neq 0, g_{\alpha} \neq 0\}$

is called the set of *roots* of \mathfrak{g} .

The weights of a Cartan \mathfrak{h} is the dual set $\mathfrak{h}^* = \{\mu : \mathfrak{h} \to \mathbb{C}\}$. Let $\mathfrak{g}_{\alpha} = \{g \in \mathfrak{g} \mid \mathrm{ad}_h(x) = \alpha(h)x\}$. The set of weights $R = \{\alpha \in \mathfrak{h}^* \mid \alpha \neq 0, g_{\alpha} \neq 0\}$

is called the set of *roots* of \mathfrak{g} .

Let \langle,\rangle be a NIBS form on \mathfrak{g} . Then the map

where h_{μ} is the unique element of \mathfrak{h} such that $\langle h_{\mu}, h \rangle = \mu(h)$ for all $h \in \mathfrak{h}$. The weights of a Cartan \mathfrak{h} is the dual set $\mathfrak{h}^* = \{\mu : \mathfrak{h} \to \mathbb{C}\}$. Let $\mathfrak{g}_{\alpha} = \{g \in \mathfrak{g} \mid \mathrm{ad}_h(x) = \alpha(h)x\}$. The set of weights $R = \{\alpha \in \mathfrak{h}^* \mid \alpha \neq 0, g_{\alpha} \neq 0\}$

is called the set of *roots* of \mathfrak{g} .

Let \langle,\rangle be a NIBS form on $\mathfrak{g}.$ Then the map

where h_{μ} is the unique element of \mathfrak{h} such that $\langle h_{\mu}, h \rangle = \mu(h)$ for all $h \in \mathfrak{h}$.

Define $\langle,\rangle:\mathfrak{h}^*\otimes\mathfrak{h}^*\to\mathbb{C}$ by $\langle\mu,\lambda\rangle=\langle h_{\mu},h_{\lambda}\rangle.$