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From last time:

Let U be a Hopf algebra with module M .

I A bilinear form is a map 〈, 〉 :M ⊗M → C.

I A bilinear form is symmetric if 〈m,n〉 = 〈n,m〉 for all
x, y ∈M .

I A bilinear form is invariant if 〈xm, n〉 = 〈m,S(x)n〉 for all
x ∈ U .

I A bilinear form is nondegenerate if 〈x,M〉 6= 0 for all x ∈M .

The Killing form on a Lie algebra g is

〈x, y〉 = Tr(adxady),

and is invariant, bilinear, and symmetric. If g is semisimple, it is
also nondegenerate.

If g is simple, then every nondegenerate invariant bilinear
symmetric (NIBS) form is a constant multiple of the Killing form.



Jordan canonical form: Every linear map can be decomposed into
blocks, 

λ 1 0
λ 1

. . .

1
0 λ



= λI︸︷︷︸
s

+


0 1 0

0 1
. . .

1
0 0


︸ ︷︷ ︸

n

which are the sum of a semisimple (diagonalizable) part s and a
nilpotent (n` = 0 for some `) part n. Further, s = λI is central, so
sn = ns.

So every linear transformation x can be expressed as

x = xs + xn with
xs semisimple,
xn nilpotent, and
xnxs = xsxn



Jordan canonical form: Every linear map can be decomposed into
blocks, 

λ 1 0
λ 1

. . .

1
0 λ

 = λI︸︷︷︸
s

+


0 1 0

0 1
. . .

1
0 0


︸ ︷︷ ︸

n

which are the sum of a semisimple (diagonalizable) part s and a
nilpotent (n` = 0 for some `) part n.

Further, s = λI is central, so
sn = ns.

So every linear transformation x can be expressed as

x = xs + xn with
xs semisimple,
xn nilpotent, and
xnxs = xsxn



Jordan canonical form: Every linear map can be decomposed into
blocks, 

λ 1 0
λ 1

. . .

1
0 λ

 = λI︸︷︷︸
s

+


0 1 0

0 1
. . .

1
0 0


︸ ︷︷ ︸

n

which are the sum of a semisimple (diagonalizable) part s and a
nilpotent (n` = 0 for some `) part n. Further, s = λI is central, so
sn = ns.

So every linear transformation x can be expressed as

x = xs + xn with
xs semisimple,
xn nilpotent, and
xnxs = xsxn



Jordan canonical form: Every linear map can be decomposed into
blocks, 

λ 1 0
λ 1

. . .

1
0 λ

 = λI︸︷︷︸
s

+


0 1 0

0 1
. . .

1
0 0


︸ ︷︷ ︸

n

which are the sum of a semisimple (diagonalizable) part s and a
nilpotent (n` = 0 for some `) part n. Further, s = λI is central, so
sn = ns.

So every linear transformation x can be expressed as

x = xs + xn with
xs semisimple,
xn nilpotent, and
xnxs = xsxn



Let g be a FDSSC Lie algebra. For x ∈ g, x is
semisimple/nilpotent if adx is semisimple/nilpotent.

Theorem (Jordan-Chevalley decomposition)

For x ∈ g, then there exist unique xs semisimple and xn nilpotent
satisfying

x = xs + xn and [xs, xn] = 0.

Further if y ∈ g satisfies [x, y] = 0, then [xs, y] = [xn, y] = 0.
(see, for example, [Hum, §4.2] or [Ser, §I.5])

Theorem (Jasobson-Morozov)

If x is a nilpotent element of a finite-dimensional complex
semisimple Lie algebra g, then there exist nilpotent y and
semisimple h in g such that

[x, y] = h, [h, x] = 2x, [h, y] = −2y.

This choice is relatively unique (with some changes in constants).
We call {x, y, h} an sl2 triple.
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A Cartan subalgebra of g is a maximal abelian subalgebra h ⊂ g
consisting of semisimple elements.

Some facts about Cartans: (see for example [Ser, Ch. III])

1. Cartan subalgebras are generated by taking a (nice) semisimple
element h and setting

h = {g ∈ g | adh(g) = 0}
2. Cartan subalgebras exist and are unique up to inner

automorphisms.

3. The centralizer of h is h.

4. All elements of h are semisimple.

5. The restriction of the Killing form to h is non-degenerate.

The rank of a semisimple Lie algebra is defined by

rank(g) = dim(h).
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The weights of a Cartan h is the dual set h∗ = {µ : h→ C}.

Let gα = {g ∈ g | adh(x) = α(h)x}. The set of weights

R = {α ∈ h∗ | α 6= 0, gα 6= 0}

is called the set of roots of g.

Let 〈, 〉 be a NIBS form on g. Then the map

h −→ h∗

h 7→ 〈h, ·〉
hµ 7→ µ

is an isomorphism,

where hµ is the unique element of h such that
〈hµ, h〉 = µ(h) for all h ∈ h.

Define 〈, 〉 : h∗ ⊗ h∗ → C by 〈µ, λ〉 = 〈hµ, hλ〉.



The weights of a Cartan h is the dual set h∗ = {µ : h→ C}.

Let gα = {g ∈ g | adh(x) = α(h)x}. The set of weights

R = {α ∈ h∗ | α 6= 0, gα 6= 0}

is called the set of roots of g.

Let 〈, 〉 be a NIBS form on g. Then the map

h −→ h∗

h 7→ 〈h, ·〉
hµ 7→ µ

is an isomorphism,

where hµ is the unique element of h such that
〈hµ, h〉 = µ(h) for all h ∈ h.

Define 〈, 〉 : h∗ ⊗ h∗ → C by 〈µ, λ〉 = 〈hµ, hλ〉.



The weights of a Cartan h is the dual set h∗ = {µ : h→ C}.

Let gα = {g ∈ g | adh(x) = α(h)x}. The set of weights

R = {α ∈ h∗ | α 6= 0, gα 6= 0}

is called the set of roots of g.

Let 〈, 〉 be a NIBS form on g. Then the map

h −→ h∗

h 7→ 〈h, ·〉
hµ 7→ µ

is an isomorphism,

where hµ is the unique element of h such that
〈hµ, h〉 = µ(h) for all h ∈ h.

Define 〈, 〉 : h∗ ⊗ h∗ → C by 〈µ, λ〉 = 〈hµ, hλ〉.



The weights of a Cartan h is the dual set h∗ = {µ : h→ C}.

Let gα = {g ∈ g | adh(x) = α(h)x}. The set of weights

R = {α ∈ h∗ | α 6= 0, gα 6= 0}

is called the set of roots of g.

Let 〈, 〉 be a NIBS form on g. Then the map

h −→ h∗

h 7→ 〈h, ·〉
hµ 7→ µ

is an isomorphism,

where hµ is the unique element of h such that
〈hµ, h〉 = µ(h) for all h ∈ h.

Define 〈, 〉 : h∗ ⊗ h∗ → C by 〈µ, λ〉 = 〈hµ, hλ〉.


