Math 128: Lecture 6

April 4, 2014



From last time:

Let U be a Hopf algebra with module M.
» A bilinear form is a map (,) : M @ M — C.

» A bilinear form is symmetric if (m,n) = (n,m) for all
z,y € M.

» A bilinear form is invariant if (xm,n) = (m, S(z)n) for all
reU.
> A bilinear form is nondegenerate if (x, M) # 0 for all x € M.

The Killing form on a Lie algebra g is
(x,y) = Tr(adgady),

and is invariant, bilinear, and symmetric. If g is semisimple, it is
also nondegenerate.

If g is simple, then every nondegenerate invariant bilinear
symmetric (NIBS) form is a constant multiple of the Killing form.
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which are the sum of a semisimple (diagonalizable) part s and a
nilpotent (n’ = 0 for some ) part n. Further, s = AI is central, so
sn = ns.

So every linear transformation x can be expressed as
x5 semisimple,

r=uxs+x, with x, nilpotent, and
Inls = Tsln



Let g be a FDSSC Lie algebra. For x € g, x is
semisimple/nilpotent if ad, is semisimple/nilpotent.
Theorem (Jordan-Chevalley decomposition)
For x € g, then there exist unique xs semisimple and x.,, nilpotent
satisfying
r=2xs+x, and [zs,x,]=0.
Further if y € g satisfies [x,y] = 0, then [zs,y] = [, y] = 0.
(see, for example, [Hum, §4.2] or [Ser, §1.5])
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Theorem (Jasobson-Morozov)

If © is a nilpotent element of a finite-dimensional complex
semisimple Lie algebra g, then there exist nilpotent y and
semisimple h in g such that

[z,y] = h, [h, z] = 2z, [h,y] = —2y.

This choice is relatively unique (with some changes in constants).
We call {z,y,h} an sly triple.
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The rank of a semisimple Lie algebra is defined by

rank(g) = dim(h).
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The weights of a Cartan b is the dual set h* = {u: h — C}.
Let go = {g € g | adp(z) = a(h)x}. The set of weights

R={aebh’ | a#0,g9, #0}
is called the set of roots of g.
Let (,) be a NIBS form on g. Then the map
h o b

h +—  (h,) is an isomorphism,
hy 7

where hy, is the unique element of b such that
(hyy h) = p(h) for all h € b.

Define (,) : h* @ h* — C by (u, A) = (hy, ha).



