Math 128: Lecture 5

April 2, 2014

Last time: Let M be a finite-dimensional simple $\mathfrak{s l}_{2}(\mathbb{C})$-module.
(1) h has at least one weight vector $v \in M$. Use $h x=x h+[h, x]$ to show that $\left\{x^{\ell} v^{+} \mid \ell \in \mathbb{Z}_{\geq 0}\right\}$ are also w.v.'s with distinct weights.
(2) Since the weights of h on the $x^{\ell} v^{\prime}$'s are distinct, the non-zero $x^{\ell} v^{\prime}$ s are distinct. So since M is f.d., there must be $0 \neq v^{+} \in M$ with

$$
x v^{+}=0 \quad \text { and } \quad h v^{+}=\mu v^{+} \text {for some } \mu \in \mathbb{C} .
$$

The vector v^{+}is called a primitive element.
(3) Use $h y=y h+[h, y]$ to show that $\left\{y^{\ell} v^{+} \mid \ell \in \mathbb{Z}_{\geq 0}\right\}$ are also weight vectors with distinct weights. So again, since M is finite-dimensional, there must be some $d \in \mathbb{Z}_{\geq 0}$ with $y^{d} v^{+} \neq 0$ and $y^{d+1} v^{+}=0$.
(4) Use $x y=y x+h$ to show $x y^{\ell} v^{+}=\ell(\mu-(\ell-1))$.
(5) Looking at the $(d+1, d+1)$ entry of h, use $[x, y]=h$ to show $\mu=d$.

Theorem

The simple finite dimensional $\mathfrak{s l}_{2}$ modules $L(d)$ are indexed by $d \in \mathbb{Z}_{\geq 0}$ with basis $\left\{v^{+}, y v^{+}, y^{2} v^{+}, \ldots, y^{d} v^{+}\right\}$and action $x v^{+}=0, y^{d+1} v^{+}=0$,

$$
\begin{gathered}
h\left(y^{\ell} v^{+}\right)=(d-2 \ell)\left(y^{\ell} v^{+}\right) \\
x\left(y^{\ell} v^{+}\right)=\ell(d+1-\ell)\left(y^{\ell-1} v^{+}\right), \quad \text { and } \quad y\left(y^{\ell} v^{+}\right)=y^{\ell+1} v^{+}
\end{gathered}
$$

$$
\begin{gathered}
h=\left(\begin{array}{lllll}
\mu & & & & \\
& \mu-2 & & & \\
& & \mu-4 & & \\
y=\left(\begin{array}{lllll}
0 & & & & \ddots
\end{array}\right. \\
1 & 0 & & & \\
& 1 & 0 & & \\
& & & \ddots & \\
& & & 1 & 0
\end{array}\right) \quad x=\left(\begin{array}{ccccc}
0 & \mu & & \\
& 0 & 2 \mu-2 & \\
& & 0 & 3 \mu-6 & \\
& & & \ddots & d(\mu-(d-1)) \\
& & & & 0
\end{array}\right)
\end{gathered}
$$

Some facts about finite-dimensional $\mathfrak{s l}_{2}$ modules.

The weights of $L(d)$ are
(1) symmetric about 0 ,
(2) all with the same parity,
(3) are the convex hull of $\{d,-d\}$ in the lattice $2 \mathbb{Z}+d$.

Some facts about finite-dimensional $\mathfrak{s l}_{2}$ modules.

The weights of $L(d)$ are
(1) symmetric about 0 ,
(2) all with the same parity,
(3) are the convex hull of $\{d,-d\}$ in the lattice $2 \mathbb{Z}+d$.

So the weights of any finite-dimensional $\mathfrak{s l}_{2}$-module M are also symmetric about 0 , with the property that
$\operatorname{dim}\left(M_{ \pm a}\right) \leq \operatorname{dim}\left(M_{ \pm b}\right) \quad$ for all $0<b<a$, with $a, b \in 2 \mathbb{Z}$ or $2 \mathbb{Z}+1$.

Some facts about finite-dimensional $\mathfrak{s l}_{2}$ modules.

The weights of $L(d)$ are
(1) symmetric about 0 ,
(2) all with the same parity,
(3) are the convex hull of $\{d,-d\}$ in the lattice $2 \mathbb{Z}+d$.

So the weights of any finite-dimensional $\mathfrak{s l}_{2}$-module M are also symmetric about 0 , with the property that
$\operatorname{dim}\left(M_{ \pm a}\right) \leq \operatorname{dim}\left(M_{ \pm b}\right) \quad$ for all $0<b<a$, with $a, b \in 2 \mathbb{Z}$ or $2 \mathbb{Z}+1$.

If $\left\{m_{1}, \ldots, m_{r}\right\}$ and $\left\{n_{1}, \ldots, n_{s}\right\}$ are weight bases for $\mathfrak{s l}_{2}$-modules M and N respectively, then $\left\{m_{i} \otimes n_{j} \mid i=1, \ldots, r, j=1, \ldots, s\right\}$ is a weight basis of $M \otimes N$, and the weight spaces of $M \otimes N$ are

$$
(M \otimes N)_{\gamma}=\bigoplus_{\alpha+\beta=\gamma} M_{\alpha} \otimes M_{\beta} .
$$

Example

For any $d>0, L(d) \otimes L(1)=L(d+1) \oplus L(d-1)$.

Example

For any $d>0, L(d) \otimes L(1)=L(d+1) \oplus L(d-1)$.
So the dimension of $L(a)$ in $L(1)^{\otimes k}$ is given by the number of downward-moving paths from $L(1)$ on level on, to $L(a)$ on level k in the lattice

Finite-dimensional semisimple complex Lie algebras \mathfrak{g}

Finite-dimensional: \mathfrak{g} is a finite-dimensional vector space.
Complex: \mathfrak{g} is a vector space over \mathbb{C}.
Lie algebra: \mathfrak{g} is a vector space with Lie bracket [,].
What is semisimple?

Finite-dimensional semisimple complex Lie algebras \mathfrak{g}

Finite-dimensional: \mathfrak{g} is a finite-dimensional vector space.
Complex: \mathfrak{g} is a vector space over \mathbb{C}.
Lie algebra: \mathfrak{g} is a vector space with Lie bracket [,].
What is semisimple?

Definition 1
An ideal of \mathfrak{g} is a subspace \mathfrak{a} such that if $x \in \mathfrak{g}, a \in \mathfrak{a}$, then $[x, a] \in \mathfrak{a}$.

Finite-dimensional semisimple complex Lie algebras \mathfrak{g}

Finite-dimensional: \mathfrak{g} is a finite-dimensional vector space.
Complex: \mathfrak{g} is a vector space over \mathbb{C}.
Lie algebra: \mathfrak{g} is a vector space with Lie bracket [,].
What is semisimple?

Definition 1
An ideal of \mathfrak{g} is a subspace \mathfrak{a} such that if $x \in \mathfrak{g}, a \in \mathfrak{a}$, then $[x, a] \in \mathfrak{a}$. A simple Lie algebra is a Lie algebra with no non-trivial proper ideals and $[\mathfrak{g}, \mathfrak{g}] \neq 0$.

Finite-dimensional semisimple complex Lie algebras \mathfrak{g}

Finite-dimensional: \mathfrak{g} is a finite-dimensional vector space.
Complex: \mathfrak{g} is a vector space over \mathbb{C}.
Lie algebra: \mathfrak{g} is a vector space with Lie bracket [,].
What is semisimple?

Definition 1
An ideal of \mathfrak{g} is a subspace \mathfrak{a} such that if $x \in \mathfrak{g}, a \in \mathfrak{a}$, then $[x, a] \in \mathfrak{a}$. A simple Lie algebra is a Lie algebra with no non-trivial proper ideals and $[\mathfrak{g}, \mathfrak{g}] \neq 0$. A Lie algebra \mathfrak{g} is semisimple if it is a direct sum of simple Lie algebras,

$$
\mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \oplus \cdots \oplus \mathfrak{g}_{\ell}
$$

as Lie algebras.

Finite-dimensional semisimple complex Lie algebras \mathfrak{g}

Finite-dimensional: \mathfrak{g} is a finite-dimensional vector space.
Complex: \mathfrak{g} is a vector space over \mathbb{C}.
Lie algebra: \mathfrak{g} is a vector space with Lie bracket [,].
What is semisimple?

Definition 1
An ideal of \mathfrak{g} is a subspace \mathfrak{a} such that if $x \in \mathfrak{g}, a \in \mathfrak{a}$, then $[x, a] \in \mathfrak{a}$. A simple Lie algebra is a Lie algebra with no non-trivial proper ideals and $[\mathfrak{g}, \mathfrak{g}] \neq 0$. A Lie algebra \mathfrak{g} is semisimple if it is a direct sum of simple Lie algebras,

$$
\mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \oplus \cdots \oplus \mathfrak{g}_{\ell}
$$

as Lie algebras. A Lie algebra \mathfrak{g} is reductive if it is a direct sum of simple and abelian Lie algebras.

Finite-dimensional semisimple complex Lie algebras \mathfrak{g}

Definition 1

An ideal of \mathfrak{g} is a subspace \mathfrak{a} such that if $x \in \mathfrak{g}, a \in \mathfrak{a}$, then $[x, a] \in \mathfrak{a}$. A simple Lie algebra is a Lie algebra with no non-trivial proper ideals and $[\mathfrak{g}, \mathfrak{g}] \neq 0$. A Lie algebra \mathfrak{g} is semisimple if it is a direct sum of simple Lie algebras,

$$
\mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \oplus \cdots \oplus \mathfrak{g}_{\ell}
$$

as Lie algebras. A Lie algebra \mathfrak{g} is reductive if it is a direct sum of simple and abelian Lie algebras.

Definition 2
A \mathfrak{g}-module is simple if it has no non-trivial proper submodules.

Finite-dimensional semisimple complex Lie algebras \mathfrak{g}

Definition 1

An ideal of \mathfrak{g} is a subspace \mathfrak{a} such that if $x \in \mathfrak{g}, a \in \mathfrak{a}$, then $[x, a] \in \mathfrak{a}$. A simple Lie algebra is a Lie algebra with no non-trivial proper ideals and $[\mathfrak{g}, \mathfrak{g}] \neq 0$. A Lie algebra \mathfrak{g} is semisimple if it is a direct sum of simple Lie algebras,

$$
\mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \oplus \cdots \oplus \mathfrak{g}_{\ell}
$$

as Lie algebras. A Lie algebra \mathfrak{g} is reductive if it is a direct sum of simple and abelian Lie algebras.

Definition 2

A \mathfrak{g}-module is simple if it has no non-trivial proper submodules. A \mathfrak{g}-module M is semisimple (or completely reducible) if M is a direct sum of simple \mathfrak{g}-modules:

$$
M \cong M_{1} \oplus \cdots \oplus M_{\ell}
$$

as \mathfrak{g}-modules.

Finite-dimensional semisimple complex Lie algebras \mathfrak{g}

Definition 1

An ideal of \mathfrak{g} is a subspace \mathfrak{a} such that if $x \in \mathfrak{g}, a \in \mathfrak{a}$, then $[x, a] \in \mathfrak{a}$. A simple Lie algebra is a Lie algebra with no non-trivial proper ideals and $[\mathfrak{g}, \mathfrak{g}] \neq 0$. A Lie algebra \mathfrak{g} is semisimple if it is a direct sum of simple Lie algebras,

$$
\mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \oplus \cdots \oplus \mathfrak{g}_{\ell}
$$

as Lie algebras. A Lie algebra \mathfrak{g} is reductive if it is a direct sum of simple and abelian Lie algebras.

Definition 2

A \mathfrak{g}-module is simple if it has no non-trivial proper submodules. A \mathfrak{g}-module M is semisimple (or completely reducible) if M is a direct sum of simple \mathfrak{g}-modules:

$$
M \cong M_{1} \oplus \cdots \oplus M_{\ell}
$$

as \mathfrak{g}-modules. A Lie algebra \mathfrak{g} is semisimple if it has trivial center and all of the finite dimensional \mathfrak{g}-modules are semisimple.

Recall a Hopf algebra is an algebra U with three maps

$$
\Delta: U \rightarrow U \otimes U, \quad \varepsilon: U \rightarrow \mathbb{C}, \quad \text { and } \quad S: U \rightarrow U
$$

(coproduct, counit, and antipode) such that
(1) If M and N are U-modules, then $M \otimes N$ is a U-module with action

$$
x(m \otimes n)=\sum_{x} x_{(1)} m \otimes x_{(2)} n
$$

where $\Delta(x)=\sum_{x} x_{(1)} \otimes x_{(2)}$.
(2) The trivial module is given by $\mathbb{C}=v \mathbb{C}$ with action $x v_{1}=\varepsilon(x) v_{1}$.
(3) If M is a U-module then $M^{*}=\operatorname{Hom}(M, \mathbb{C})$ is a U-module with action

$$
(x \varphi)(m)=\varphi(S(x) m)
$$

(4) The maps $\cup: M \otimes M^{*} \rightarrow \mathbb{C}$ and $\cap: \mathbb{C} \rightarrow M \otimes M^{*}$ are U-module homomorphisms.

Forms

Let U be a Hopf algebra with module M.

- A bilinear form is a map $\langle\rangle:, M \otimes M \rightarrow \mathbb{C}$.

Forms

Let U be a Hopf algebra with module M.

- A bilinear form is a map $\langle\rangle:, M \otimes M \rightarrow \mathbb{C}$.
- A bilinear form is symmetric if $\langle m, n\rangle=\langle n, m\rangle$ for all $x, y \in M$.

Forms

Let U be a Hopf algebra with module M.

- A bilinear form is a map $\langle\rangle:, M \otimes M \rightarrow \mathbb{C}$.
- A bilinear form is symmetric if $\langle m, n\rangle=\langle n, m\rangle$ for all $x, y \in M$.
- A symmetric bilinear form is invariant if $\langle x m, n\rangle=\langle m, S(x) n\rangle$ for all $x \in U$.

Forms

Let U be a Hopf algebra with module M.

- A bilinear form is a map $\langle\rangle:, M \otimes M \rightarrow \mathbb{C}$.
- A bilinear form is symmetric if $\langle m, n\rangle=\langle n, m\rangle$ for all $x, y \in M$.
- A symmetric bilinear form is invariant if $\langle x m, n\rangle=\langle m, S(x) n\rangle$ for all $x \in U$.
- A - "- form is nondegenerate if $\langle x, U\rangle \neq 0$ for all $x \in U$.

Forms

Let U be a Hopf algebra with module M.

- A bilinear form is a map $\langle\rangle:, M \otimes M \rightarrow \mathbb{C}$.
- A bilinear form is symmetric if $\langle m, n\rangle=\langle n, m\rangle$ for all $x, y \in M$.
- A symmetric bilinear form is invariant if $\langle x m, n\rangle=\langle m, S(x) n\rangle$ for all $x \in U$.
- A - "- form is nondegenerate if $\langle x, U\rangle \neq 0$ for all $x \in U$.

The Killing form on a Lie algebra \mathfrak{g} is

$$
\langle x, y\rangle=\operatorname{Tr}\left(\operatorname{ad}_{x} \operatorname{ad}_{y}\right) .
$$

Forms

Let U be a Hopf algebra with module M.

- A bilinear form is a map $\langle\rangle:, M \otimes M \rightarrow \mathbb{C}$.
- A bilinear form is symmetric if $\langle m, n\rangle=\langle n, m\rangle$ for all $x, y \in M$.
- A symmetric bilinear form is invariant if $\langle x m, n\rangle=\langle m, S(x) n\rangle$ for all $x \in U$.
- A - "- form is nondegenerate if $\langle x, U\rangle \neq 0$ for all $x \in U$.

The Killing form on a Lie algebra \mathfrak{g} is

$$
\langle x, y\rangle=\operatorname{Tr}\left(\operatorname{ad}_{x} \operatorname{ad}_{y}\right) .
$$

If \mathfrak{g} is simple, then every NIBS form is a constant multiple of the Killing form.

