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Last time: Let M be a finite-dimensional simple sl2(C)-module.

(1) h has at least one weight vector v ∈M . Use hx = xh+ [h, x] to
show that {x`v+ | ` ∈ Z≥0} are also w.v.’s with distinct weights.

(2) Since the weights of h on the x`v’s are distinct, the non-zero x`v’s
are distinct. So since M is f.d., there must be 0 6= v+ ∈M with

xv+ = 0 and hv+ = µv+ for some µ ∈ C.

The vector v+ is called a primitive element.

(3) Use hy = yh+ [h, y] to show that {y`v+ | ` ∈ Z≥0} are also weight
vectors with distinct weights. So again, since M is finite-dimensional,
there must be some d ∈ Z≥0 with ydv+ 6= 0 and yd+1v+ = 0.

(4) Use xy = yx+ h to show xy`v+ = `(µ− (`− 1)).

(5) Looking at the (d+ 1, d+ 1) entry of h, use [x, y] = h to show µ = d.

Theorem
The simple finite dimensional sl2 modules L(d) are indexed by d ∈ Z≥0

with basis {v+, yv+, y2v+, . . . , ydv+} and action xv+ = 0, yd+1v+ = 0,

h(y`v+) = (d− 2`)(y`v+),

x(y`v+) = `(d+ 1− `)(y`−1v+), and y(y`v+) = y`+1v+.
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Some facts about finite-dimensional sl2 modules.

The weights of L(d) are

(1) symmetric about 0,

(2) all with the same parity,

(3) are the convex hull of {d,−d} in the lattice 2Z + d.

So the weights of any finite-dimensional sl2-module M are also
symmetric about 0, with the property that

dim(M±a) ≤ dim(M±b) for all 0 < b < a, with a, b ∈ 2Z or 2Z + 1.

If {m1, . . . ,mr} and {n1, . . . , ns} are weight bases for sl2-modules
M and N respectively, then {mi ⊗ nj | i = 1, . . . , r, j = 1, . . . , s}
is a weight basis of M ⊗N , and the weight spaces of M ⊗N are

(M ⊗N)γ =
⊕

α+β=γ

Mα ⊗Mβ.
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Example

For any d > 0, L(d)⊗ L(1) = L(d+ 1)⊕ L(d− 1).

So the dimension of L(a) in L(1)⊗k is given by the number of
downward-moving paths from L(1) on level on, to L(a) on level k
in the lattice

L(1)

L(0) L(2)

L(1) L(3)

L(0) L(2) L(4)

L(1) L(3) L(5)

...
...

...

k = 1:

k = 2:

k = 3:

k = 4:

k = 5:
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Finite-dimensional semisimple complex Lie algebras g

Finite-dimensional: g is a finite-dimensional vector space.

Complex: g is a vector space over C.

Lie algebra: g is a vector space with Lie bracket [, ].

What is semisimple?

Definition 1
An ideal of g is a subspace a such that if x ∈ g, a ∈ a, then [x, a] ∈ a.

A simple Lie algebra is a Lie algebra with no non-trivial proper ideals and
[g, g] 6= 0. A Lie algebra g is semisimple if it is a direct sum of simple
Lie algebras,

g = g1 ⊕ g2 ⊕ · · · ⊕ g`

as Lie algebras. A Lie algebra g is reductive if it is a direct sum of simple
and abelian Lie algebras.
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Definition 2
A g-module is simple if it has no non-trivial proper submodules.

A
g-module M is semisimple (or completely reducible) if M is a direct sum
of simple g-modules:

M ∼= M1 ⊕ · · · ⊕M`

as g-modules. A Lie algebra g is semisimple if it has trivial center and
all of the finite dimensional g-modules are semisimple.
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Recall a Hopf algebra is an algebra U with three maps

∆ : U → U ⊗ U, ε : U → C, and S : U → U

(coproduct, counit, and antipode) such that

(1) If M and N are U -modules, then M ⊗N is a U -module with
action

x(m⊗ n) =
∑
x

x(1)m⊗ x(2)n

where ∆(x) =
∑

x x(1) ⊗ x(2).
(2) The trivial module is given by C = vC with action

xv1 = ε(x)v1.

(3) If M is a U -module then M∗ = Hom(M,C) is a U -module
with action

(xϕ)(m) = ϕ(S(x)m).

(4) The maps ∪ : M ⊗M∗ → C and ∩ : C→M ⊗M∗ are
U -module homomorphisms.



Forms

Let U be a Hopf algebra with module M .

I A bilinear form is a map 〈, 〉 : M ⊗M → C.

I A bilinear form is symmetric if 〈m,n〉 = 〈n,m〉 for all
x, y ∈M .

I A symmetric bilinear form is invariant if
〈xm, n〉 = 〈m,S(x)n〉 for all x ∈ U .

I A — ”— form is nondegenerate if 〈x, U〉 6= 0 for all x ∈ U .

The Killing form on a Lie algebra g is

〈x, y〉 = Tr(adxady).

If g is simple, then every NIBS form is a constant multiple of the
Killing form.
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