Math 128: Lecture 4
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Recall if g is a Lie algebra with modules M and N, then x € g acts
onm®née M®N by

r(m®n) =xm@n+m zn.

SoA(z)=z®1+1®xeUg® Ug.

We also calculated for x,y € g,

zy(m®@n) =z(ym @n+m  yn)
= (zyym@n+armyn+ym @ zn+m (xy)n.

So

Alzy) = (zy)@1+z2y+yRzr+ 11 (xy)
=@r®1+102)(ye1+1y)
= A(z)A(y).
In general, if w = x122...2p € Ug with x; € g, then

A(w) = A(z1)A(z2) - - - Axy).
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So far:




In summary, the sly-action is given by:
> his a diagonal matrix with p, p —2, p—4, ..., p —2d on
the diagonal,
» y has 1's on the sub-diagonal and zeros elsewhere, and
» x has the weights u, 24— 2, 3u—6, ..., d(u—(d—1)) on
the super-diagonal.



Theorem
The simple finite dimensional sl modules L(d) are indexed by
d € Z>o with basis {vT,yvt, y?vt, ...y} and action

h(yv?) = (d - 20)(y"v"),
eyt =0d+1-0y" ),  withzvt =0 and
bty = Lyt d+l,+ _ .

=y ,  withy
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|dentifying finite dimensional sl;-modules

Fact: all f.d. sla-modules are finite sums of simple modules (i.e.
sums of L(d)'s).

Let M be a (not nec. simple) sla-module.
As a Ch-module,

M:@MM where M, ={me M | hm = pm},
pneC

is the 1 weight space.
(Remember, “weight”="eigen...")



