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Recall if g is a Lie algebra with modules M and N , then x ∈ g acts
on m⊗ n ∈M ⊗N by

x(m⊗ n) = xm⊗ n+m⊗ xn.

So ∆(x) = x⊗ 1 + 1⊗ x ∈ Ug⊗ Ug.

We also calculated for x, y ∈ g,

xy(m⊗ n) = x(ym⊗ n+m⊗ yn)

= (xy)m⊗ n+ xm⊗ yn+ ym⊗ xn+m⊗ (xy)n.

So

∆(xy) = (xy)⊗ 1 + x⊗ y + y ⊗ x+ 1⊗ (xy)

= (x⊗ 1 + 1⊗ x)(y ⊗ 1 + 1⊗ y)

= ∆(x)∆(y).

In general, if w = x1x2 . . . x` ∈ Ug with xi ∈ g, then

∆(w) = ∆(x1)∆(x2) · · ·∆(x`).
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Representations of sl2(C)
Last time: Let M be a finite-dimensional simple sl2(C)-module.

(1) h has at least one eigenvector v ∈M , with hv = λv for some λ ∈ C.

(2) Use hx = xh+ [h, x] to show that x`v is also an eigenvector for h
with weight λ+ 2` for each ` ∈ Z≥0.

(3) Since the eigenvalues of h on the x`v’s are distinct, the x`v’s are
distinct. Since M is finite dimensional, there must be a non-zero
v+ ∈M with

xv+ = 0 and hv+ = µv+ for some µ ∈ C.

(4) Similarly as with x, use hy = yh+ [h, y] to show that y`v+ is also
an eigenvector for h with weight µ− 2` for each ` ∈ Z≥0.

(5) Again, since M is finite-dimensional, there must be some d ∈ Z≥0

with
ydv+ 6= 0 and yd+1v+ = 0.

So far:

v+ yv+ y2v+ yd−1v+ ydv+
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In summary, the sl2-action is given by:

I h is a diagonal matrix with µ, µ− 2, µ− 4, . . . , µ− 2d on
the diagonal,

I y has 1’s on the sub-diagonal and zeros elsewhere, and

I x has the weights µ, 2µ− 2, 3µ− 6, . . . , d(µ− (d− 1)) on
the super-diagonal.

h =


µ

µ− 2
µ− 4

. . .

µ− 2d



y =


0
1 0

1 0
. . .

1 0

 x =


0 µ

0 2µ− 2
0 3µ− 6

. . . d(µ− (d− 1))
0





Theorem
The simple finite dimensional sl2 modules L(d) are indexed by
d ∈ Z≥0 with basis {v+, yv+, y2v+, . . . , ydv+} and action

h(y`v+) = (d− 2`)(y`v+),

x(y`v+) = `(d+ 1− `)(y`−1v+), with xv+ = 0 and

y(y`v+) = y`+1v+, with yd+1v+ = 0.



Identifying finite dimensional sl2-modules

Fact: all f.d. sl2-modules are finite sums of simple modules (i.e.
sums of L(d)’s).

Let M be a (not nec. simple) sl2-module.
As a Ch-module,

M =
⊕
µ∈C

Mµ where Mµ = {m ∈M | hm = µm},

is the µ weight space.
(Remember, “weight”=“eigen. . . ”)
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