Math 128: Lecture 4

March 31, 2014

Recall if $\mathfrak{g}$ is a Lie algebra with modules $M$ and $N$, then $x \in \mathfrak{g}$ acts on $m \otimes n \in M \otimes N$ by

$$
x(m \otimes n)=x m \otimes n+m \otimes x n .
$$

So $\Delta(x)=x \otimes 1+1 \otimes x \in U \mathfrak{g} \otimes U \mathfrak{g}$.

Recall if $\mathfrak{g}$ is a Lie algebra with modules $M$ and $N$, then $x \in \mathfrak{g}$ acts on $m \otimes n \in M \otimes N$ by

$$
x(m \otimes n)=x m \otimes n+m \otimes x n
$$

So $\Delta(x)=x \otimes 1+1 \otimes x \in U \mathfrak{g} \otimes U \mathfrak{g}$.
We also calculated for $x, y \in \mathfrak{g}$,

$$
\begin{aligned}
x y(m \otimes n) & =x(y m \otimes n+m \otimes y n) \\
& =(x y) m \otimes n+x m \otimes y n+y m \otimes x n+m \otimes(x y) n
\end{aligned}
$$

So

$$
\Delta(x y)=(x y) \otimes 1+x \otimes y+y \otimes x+1 \otimes(x y)
$$

Recall if $\mathfrak{g}$ is a Lie algebra with modules $M$ and $N$, then $x \in \mathfrak{g}$ acts on $m \otimes n \in M \otimes N$ by

$$
x(m \otimes n)=x m \otimes n+m \otimes x n
$$

So $\Delta(x)=x \otimes 1+1 \otimes x \in U \mathfrak{g} \otimes U \mathfrak{g}$.
We also calculated for $x, y \in \mathfrak{g}$,

$$
\begin{aligned}
x y(m \otimes n) & =x(y m \otimes n+m \otimes y n) \\
& =(x y) m \otimes n+x m \otimes y n+y m \otimes x n+m \otimes(x y) n
\end{aligned}
$$

So

$$
\begin{aligned}
\Delta(x y) & =(x y) \otimes 1+x \otimes y+y \otimes x+1 \otimes(x y) \\
& =(x \otimes 1+1 \otimes x)(y \otimes 1+1 \otimes y) \\
& =\Delta(x) \Delta(y)
\end{aligned}
$$

Recall if $\mathfrak{g}$ is a Lie algebra with modules $M$ and $N$, then $x \in \mathfrak{g}$ acts on $m \otimes n \in M \otimes N$ by

$$
x(m \otimes n)=x m \otimes n+m \otimes x n
$$

So $\Delta(x)=x \otimes 1+1 \otimes x \in U \mathfrak{g} \otimes U \mathfrak{g}$.
We also calculated for $x, y \in \mathfrak{g}$,

$$
\begin{aligned}
x y(m \otimes n) & =x(y m \otimes n+m \otimes y n) \\
& =(x y) m \otimes n+x m \otimes y n+y m \otimes x n+m \otimes(x y) n
\end{aligned}
$$

So

$$
\begin{aligned}
\Delta(x y) & =(x y) \otimes 1+x \otimes y+y \otimes x+1 \otimes(x y) \\
& =(x \otimes 1+1 \otimes x)(y \otimes 1+1 \otimes y) \\
& =\Delta(x) \Delta(y)
\end{aligned}
$$

In general, if $w=x_{1} x_{2} \ldots x_{\ell} \in U \mathfrak{g}$ with $x_{i} \in \mathfrak{g}$, then

$$
\Delta(w)=\Delta\left(x_{1}\right) \Delta\left(x_{2}\right) \cdots \Delta\left(x_{\ell}\right)
$$

## Representations of $\mathfrak{s l}_{2}(\mathbb{C})$

Last time: Let $M$ be a finite-dimensional simple $\mathfrak{s l}_{2}(\mathbb{C})$-module.
(1) $h$ has at least one eigenvector $v \in M$, with $h v=\lambda v$ for some $\lambda \in \mathbb{C}$.

## Representations of $\mathfrak{s l}_{2}(\mathbb{C})$

Last time: Let $M$ be a finite-dimensional simple $\mathfrak{s l}_{2}(\mathbb{C})$-module.
(1) $h$ has at least one eigenvector $v \in M$, with $h v=\lambda v$ for some $\lambda \in \mathbb{C}$.
(2) Use $h x=x h+[h, x]$ to show that $x^{\ell} v$ is also an eigenvector for $h$ with weight $\lambda+2 \ell$ for each $\ell \in \mathbb{Z}_{\geq 0}$.

## Representations of $\mathfrak{s l}_{2}(\mathbb{C})$

Last time: Let $M$ be a finite-dimensional simple $\mathfrak{s l}_{2}(\mathbb{C})$-module.
(1) $h$ has at least one eigenvector $v \in M$, with $h v=\lambda v$ for some $\lambda \in \mathbb{C}$.
(2) Use $h x=x h+[h, x]$ to show that $x^{\ell} v$ is also an eigenvector for $h$ with weight $\lambda+2 \ell$ for each $\ell \in \mathbb{Z}_{\geq 0}$.
(3) Since the eigenvalues of $h$ on the $x^{\ell} v^{\prime}$ s are distinct, the $x^{\ell} v^{\prime}$ s are distinct. Since $M$ is finite dimensional, there must be a non-zero $v^{+} \in M$ with

$$
x v^{+}=0 \quad \text { and } \quad h v^{+}=\mu v^{+} \text {for some } \mu \in \mathbb{C} .
$$

## Representations of $\mathfrak{s l}_{2}(\mathbb{C})$

Last time: Let $M$ be a finite-dimensional simple $\mathfrak{s l}_{2}(\mathbb{C})$-module.
(1) $h$ has at least one eigenvector $v \in M$, with $h v=\lambda v$ for some $\lambda \in \mathbb{C}$.
(2) Use $h x=x h+[h, x]$ to show that $x^{\ell} v$ is also an eigenvector for $h$ with weight $\lambda+2 \ell$ for each $\ell \in \mathbb{Z}_{\geq 0}$.
(3) Since the eigenvalues of $h$ on the $x^{\ell} v^{\prime}$ s are distinct, the $x^{\ell} v^{\prime}$ s are distinct. Since $M$ is finite dimensional, there must be a non-zero $v^{+} \in M$ with

$$
x v^{+}=0 \quad \text { and } \quad h v^{+}=\mu v^{+} \text {for some } \mu \in \mathbb{C} .
$$

(4) Similarly as with $x$, use $h y=y h+[h, y]$ to show that $y^{\ell} v^{+}$is also an eigenvector for $h$ with weight $\mu-2 \ell$ for each $\ell \in \mathbb{Z}_{\geq 0}$.

## Representations of $\mathfrak{s l}_{2}(\mathbb{C})$

Last time: Let $M$ be a finite-dimensional simple $\mathfrak{s l}_{2}(\mathbb{C})$-module.
(1) $h$ has at least one eigenvector $v \in M$, with $h v=\lambda v$ for some $\lambda \in \mathbb{C}$.
(2) Use $h x=x h+[h, x]$ to show that $x^{\ell} v$ is also an eigenvector for $h$ with weight $\lambda+2 \ell$ for each $\ell \in \mathbb{Z}_{\geq 0}$.
(3) Since the eigenvalues of $h$ on the $x^{\ell} v^{\prime}$ s are distinct, the $x^{\ell} v^{\prime}$ s are distinct. Since $M$ is finite dimensional, there must be a non-zero $v^{+} \in M$ with

$$
x v^{+}=0 \quad \text { and } \quad h v^{+}=\mu v^{+} \text {for some } \mu \in \mathbb{C}
$$

(4) Similarly as with $x$, use $h y=y h+[h, y]$ to show that $y^{\ell} v^{+}$is also an eigenvector for $h$ with weight $\mu-2 \ell$ for each $\ell \in \mathbb{Z}_{\geq 0}$.
(5) Again, since $M$ is finite-dimensional, there must be some $d \in \mathbb{Z}_{\geq 0}$ with

$$
y^{d} v^{+} \neq 0 \quad \text { and } \quad y^{d+1} v^{+}=0 .
$$

## Representations of $\mathfrak{s l}_{2}(\mathbb{C})$

Last time: Let $M$ be a finite-dimensional simple $\mathfrak{s l}_{2}(\mathbb{C})$-module.
(1) $h$ has at least one eigenvector $v \in M$, with $h v=\lambda v$ for some $\lambda \in \mathbb{C}$.
(2) Use $h x=x h+[h, x]$ to show that $x^{\ell} v$ is also an eigenvector for $h$ with weight $\lambda+2 \ell$ for each $\ell \in \mathbb{Z}_{\geq 0}$.
(3) Since the eigenvalues of $h$ on the $x^{\ell} v^{\prime}$ s are distinct, the $x^{\ell} v^{\prime}$ s are distinct. Since $M$ is finite dimensional, there must be a non-zero $v^{+} \in M$ with

$$
x v^{+}=0 \quad \text { and } \quad h v^{+}=\mu v^{+} \text {for some } \mu \in \mathbb{C}
$$

(4) Similarly as with $x$, use $h y=y h+[h, y]$ to show that $y^{\ell} v^{+}$is also an eigenvector for $h$ with weight $\mu-2 \ell$ for each $\ell \in \mathbb{Z}_{\geq 0}$.
(5) Again, since $M$ is finite-dimensional, there must be some $d \in \mathbb{Z}_{\geq 0}$ with

$$
y^{d} v^{+} \neq 0 \quad \text { and } \quad y^{d+1} v^{+}=0
$$

So far:


In summary, the $\mathfrak{s l}_{2}$-action is given by:

- $h$ is a diagonal matrix with $\mu, \mu-2, \mu-4, \ldots, \mu-2 d$ on the diagonal,
- $y$ has 1's on the sub-diagonal and zeros elsewhere, and
- $x$ has the weights $\mu, 2 \mu-2,3 \mu-6, \ldots, d(\mu-(d-1))$ on the super-diagonal.

$$
h=\left(\begin{array}{lllll}
\mu & & & & \\
& \mu-2 & & & \\
& & \mu-4 & & \\
& & & \ddots & \\
& & & & \mu-2 d
\end{array}\right)
$$

$$
y=\left(\begin{array}{ccccc}
0 & & & & \\
1 & 0 & & & \\
& 1 & 0 & & \\
& & & \ddots & \\
& & & 1 & 0
\end{array}\right) \quad x=\left(\begin{array}{ccccc}
0 & \mu & & & \\
& 0 & 2 \mu-2 & & \\
& & 0 & 3 \mu-6 & \\
& & & \ddots & d(\mu-(d-1)) \\
& & & & 0
\end{array}\right)
$$

Theorem
The simple finite dimensional $\mathfrak{s l}_{2}$ modules $L(d)$ are indexed by $d \in \mathbb{Z}_{\geq 0}$ with basis $\left\{v^{+}, y v^{+}, y^{2} v^{+}, \ldots, y^{d} v^{+}\right\}$and action

$$
\begin{aligned}
& h\left(y^{\ell} v^{+}\right)=(d-2 \ell)\left(y^{\ell} v^{+}\right) \\
& x\left(y^{\ell} v^{+}\right)=\ell(d+1-\ell)\left(y^{\ell-1} v^{+}\right), \quad \text { with } x v^{+}=0 \text { and } \\
& y\left(y^{\ell} v^{+}\right)=y^{\ell+1} v^{+}, \quad \text { with } y^{d+1} v^{+}=0 .
\end{aligned}
$$

## Identifying finite dimensional $\mathfrak{S l}_{2}$-modules

Fact: all f.d. $\mathfrak{s l}_{2}$-modules are finite sums of simple modules (i.e. sums of $L(d)$ 's).

## Identifying finite dimensional $\mathfrak{s l}_{2}$-modules

Fact: all f.d. $\mathfrak{s l}_{2}$-modules are finite sums of simple modules (i.e. sums of $L(d)$ 's).

Let $M$ be a (not nec. simple) $\mathfrak{s l}_{2}$-module.

## Identifying finite dimensional $\mathfrak{s l}_{2}$-modules

Fact: all f.d. $\mathfrak{s l}_{2}$-modules are finite sums of simple modules (i.e. sums of $L(d)$ 's).

Let $M$ be a (not nec. simple) $\mathfrak{s l}_{2}$-module.
As a $\mathbb{C} h$-module,

$$
M=\bigoplus_{u \in \mathbb{C}} M_{\mu} \quad \text { where } \quad M_{\mu}=\{m \in M \mid h m=\mu m\}
$$

is the $\mu$ weight space.
(Remember, "weight" = "eigen. . .")

