Math 128: Lecture 3

March 28, 2014

Warmup

Recall from last time: $\mathfrak{sl}_2=\mathfrak{sl}_2(\mathbb{C})$ is generated by x,y,h with relations

$$[h,x]=2x, \quad [h,y]=-2y, \quad \text{and} \quad [x,y]=h.$$

The universal enveloping algebra $U\mathfrak{g}$ associated to a Lie algebra \mathfrak{g} has vector space spanned by the free group on a basis of \mathfrak{g} with relations ab - ba = [a, b] for $a, b \in \mathfrak{g}$.

What does $U\mathfrak{sl}_2$ look like?

A representation of an algebra A is a vector space M (called the module) with an algebra-homomorphism $\rho: A \to \operatorname{End}(V)$.

A representation of an algebra A is a vector space M (called the *module*) with an algebra-homomorphism $\rho: A \to \operatorname{End}(V)$. Put another way, it's a module M with an A-action,

$$A \otimes M \to M,$$
 where
 $(a,m) \mapsto am = \rho(a)m$

which is *bilinear*: for $c_1, c_2 \in \mathbb{C}$, $a_1, a_2 \in A$, $m_1, m_2 \in M$,

$$(c_1a_1 + c_2a_2)m = c_1a_1m + c_2a_2m$$
, and

$$a(c_1m_1 + c_2m_2) = c_1am_1 + c_2am_2$$

and preserves the multiplication: $a_1(a_2m) = (a_1a_2)m$.

A representation of an algebra A is a vector space M (called the *module*) with an algebra-homomorphism $\rho: A \to \operatorname{End}(V)$. Put another way, it's a module M with an A-action,

 $\begin{array}{ll} A\otimes M\rightarrow M, & \text{ where } \\ (a,m)\mapsto am=\rho(a)m \end{array}$

which is *bilinear*: for $c_1, c_2 \in \mathbb{C}$, $a_1, a_2 \in A$, $m_1, m_2 \in M$,

 $(c_1a_1 + c_2a_2)m = c_1a_1m + c_2a_2m$, and

$$a(c_1m_1 + c_2m_2) = c_1am_1 + c_2am_2$$

and preserves the multiplication: $a_1(a_2m) = (a_1a_2)m$.

Last time:

"A representation of a Lie algebra is a vector space V together with a Lie algebra homomorphism $\rho:\mathfrak{g}\to\mathrm{End}(V)$ satisfying $\rho([x,y])=\rho(x)\rho(y)-\rho(y)\rho(x)$."

So by definition, a representation of a Lie algebra is a representation of its enveloping algebra.

A Hopf algebra is an algebra U with three maps

$$\Delta: U \to U \otimes U, \qquad \varepsilon: U \to \mathbb{C}, \quad \text{and} \quad S: U \to U$$

such that

(1) If M and N are U-modules, then $M \otimes N$ with action

$$x(m \otimes n) = \sum_{x} x_{(1)} m \otimes x_{(2)} n$$

where $\Delta(x) = \sum_{x} x_{(1)} \otimes x_{(2)}$, is a *U*-module. [Note: this is called *Sweedler notation*]

- (2) The vector space $\mathbb{C} = v\mathbb{C}$, with actions $xv_1 = \varepsilon(x)v_1$ is a U-module.
- (3) If M is a U-module then $M^* = \operatorname{Hom}(M, \mathbb{C})$ with action

$$(x\varphi)(m) = \varphi(S(x)m)$$

is a U-module.

(4) The maps \cup and \cap are U-module homomorphisms.

Specific representations of ${\mathfrak g}$ we have so far:

- (1) Trivial representation: $\mathbb{C}v$ with xv = 0 for all $x \in \mathfrak{g}$.
- (2) Adjoint representation: $\mathfrak{g} \to \operatorname{End}(\mathfrak{g})$ by $x \mapsto \operatorname{ad}_x = [\cdot, x]$.
- (3) Standard representations of classical simple complex Lie algebras.

We can get more by taking tensor products of old representations.

Specific representations of ${\mathfrak g}$ we have so far:

- (1) Trivial representation: $\mathbb{C}v$ with xv = 0 for all $x \in \mathfrak{g}$.
- (2) Adjoint representation: $\mathfrak{g} \to \operatorname{End}(\mathfrak{g})$ by $x \mapsto \operatorname{ad}_x = [\cdot, x]$.
- (3) Standard representations of classical simple complex Lie algebras.

We can get more by taking tensor products of old representations.

Representations of \mathfrak{sl}_2 .

 $\mathfrak{sl}_2=\mathfrak{sl}_2(\mathbb{C})$ is generated by x,y,h with relations

$$[h,x]=2x, \quad [h,y]=-2y, \quad \text{and} \quad [x,y]=h.$$

If ρ is a rep of \mathfrak{sl}_2 , then $\rho(h)$ has at least one eigenvector v with eigenvalue $\lambda \in \mathbb{C}$, i.e.

$$hv = \lambda v.$$

Specific representations of \mathfrak{g} we have so far:

- (1) Trivial representation: $\mathbb{C}v$ with xv = 0 for all $x \in \mathfrak{g}$.
- (2) Adjoint representation: $\mathfrak{g} \to \operatorname{End}(\mathfrak{g})$ by $x \mapsto \operatorname{ad}_x = [\cdot, x]$.
- (3) Standard representations of classical simple complex Lie algebras.

We can get more by taking tensor products of old representations.

Representations of \mathfrak{sl}_2 .

 $\mathfrak{sl}_2=\mathfrak{sl}_2(\mathbb{C})$ is generated by x,y,h with relations

$$[h,x]=2x, \quad [h,y]=-2y, \quad \text{and} \quad [x,y]=h.$$

If ρ is a rep of \mathfrak{sl}_2 , then $\rho(h)$ has at least one eigenvector v with eigenvalue weight $\lambda \in \mathbb{C}$, i.e.

$$hv = \lambda v.$$