Math 128: Lecture Last

May 23, 2014

Recall: Our favorite diagram algebras so far

The group algebra of the symmetric group $\mathbb{C} S_{k}$ is the algebra with basis given by permutation diagrams

with multiplication given by concatenation, subject to the relations

$$
\begin{array}{lc}
X=1 & \text { and } \\
\left(s_{i}^{2}=1\right) & \\
\left(s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}\right)
\end{array}
$$

This algebra encodes $\operatorname{End}_{U \mathfrak{s l}_{n}}\left(L(\square)^{\otimes k}\right)$ for $n \geq k$. (Schur - 1901)

Recall: Our favorite diagram algebras so far

The Brauer algebra $B_{k}(\epsilon, z)$ is the algebra with basis given by Brauer diagrams

with multiplication given by concatenation, subject to the relations

When $z=n$, this algebra encodes $\operatorname{End}_{U \mathfrak{g}}\left(L(\square)^{\otimes k}\right)$ for $\mathfrak{g}=\mathfrak{s o}_{n}$ or $\mathfrak{s p}_{n}$, for appropriate choices of ϵ. (Brauer - 1937)

Recall: Our favorite diagram algebras so far

The Temperley-Lieb algebra $T L_{k}(z)$ is the algebra with basis given by non-crossing Brauer diagrams

with multiplication given by concatenation, subject to the relations

$$
\square=z \quad\left(e_{i}^{2}=z e_{i}\right)
$$

When $z=2$, this algebra encodes $\operatorname{End}_{U_{\mathfrak{s l}_{2}}}\left(L(\square){ }^{\otimes k}\right) .(T L-1971)$

Recall: Our favorite diagram algebras so far

The graded Hecke algebra of type A

$$
\mathbb{H}_{k}=\mathbb{C}\left[x_{1}, \ldots, x_{k}\right] \otimes \mathbb{C} S_{k} /(\text { relations })
$$

is the algebra with basis given by decorated permutation diagrams with decorations north of any crossings,

with multiplication given by concatenation, subject to the relations

$$
\begin{array}{cc}
X=1 \mid & X=X \\
\left(s_{i}^{2}=1\right) & \left(s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}\right)
\end{array} \quad\left(s_{i} x_{i}=x_{i+1} s_{i}-1\right)
$$

A quotient of \mathbb{H}_{k} by certain polynomial conditions on $\mathbb{C}[\mathbf{x}]$ encodes $\operatorname{End}_{U \mathfrak{s l _ { n }}}\left(L(\lambda) \otimes L(\square)^{\otimes k}\right)$ for $n \geq k$.
(Arakawa-Suzuki - 1998)

Recall: Our favorite diagram algebras so far

The degenerate affine Birman-Murakami-Wenzl (BMW) algebra

$$
\mathbb{B}_{k}\left(\epsilon, z_{0}, z_{1}, \ldots\right)=\mathbb{C}\left[x_{1}, \ldots, x_{k}\right] \otimes B_{k}\left(\epsilon, z_{0}\right) /(\text { relations })
$$

is the algebra with basis given by decorated Brauer diagrams with decorations north/west of any crossings or critical points,

with multiplication given by concatenation, subject to the relations

$$
\left.X=1 \left\lvert\, X=X \quad \begin{array}{l}
\ell \\
X
\end{array}\right.\right]=z_{\ell} \quad ऐ=\epsilon \mid
$$

$$
X-X=1 \mid-
$$

A quotient of $\mathbb{B}_{k}(\epsilon, \mathbf{z})$ by certain polynomial conditions on $\mathbb{C}[\mathbf{x}]$ encodes $\operatorname{End}_{U \mathfrak{g}}\left(L(\lambda) \otimes L(\square)^{\otimes k}\right)$ for $\mathfrak{g}=\mathfrak{s o}_{n}$ or $\mathfrak{s p}_{n}$, with appropriate choices for ϵ and the z_{ℓ} 's. (Nazarov - 1996)

Last time: Quantum groups

We saw last time one particular deformation $U_{q} \mathfrak{g}$ of $U \mathfrak{g}$, called the quantum group associated to a Lie algebra \mathfrak{g}. It is defined in terms of the root data of \mathfrak{g}, and subsequently has lots of structure similar to the structure we've seen for Lie algebras, which specializes exactly right as $q \rightarrow 1$:

$$
\begin{aligned}
q & \rightarrow 1 \\
U_{q} \mathfrak{g} & \rightarrow U \mathfrak{g} \\
x_{i}, y_{i} \frac{q^{h}-1}{q-1} & \rightarrow x_{i}, y_{i}, h \\
U_{q}^{-, 0,+} & \rightarrow U^{-, 0,+} \\
L_{q}(\lambda) & \rightarrow L(\lambda) \quad \text { for } \lambda \in P^{+} \\
\operatorname{ch}\left(L_{q}(\lambda)\right) & =\operatorname{ch}(L(\lambda))
\end{aligned}
$$

(algebraic structure)
(generators)
(triangular decomposition)
(highest weight modules)
(character)

This limit also preserves the Hopf algebra structure.

Last time: R-matrices

The existence of quantum groups came out of a study of quantum physics. Out of this study also came the existence of an invertible element

$$
R=\sum_{R} R_{(1)} \otimes R_{(2)} \in U_{q} \mathfrak{g} \otimes U_{q} \mathfrak{g}
$$

which yields isomorphisms

$$
\begin{aligned}
\check{R}_{V W}: V \otimes W & \longrightarrow W \otimes V \\
v \otimes w & \longrightarrow \sum_{R} R_{(2)} w \otimes R_{(1)} v
\end{aligned}
$$

that solved the Yang-Baxter equation. Namely, it
(1) satisfies braid relations, and
(2) commutes with the action of $U_{q} \mathfrak{g}$ on $V \otimes W$.

Last time: R-matrices

The existence of quantum groups came out of a study of quantum physics. Out of this study also came the existence of an invertible element

$$
R=\sum_{R} R_{(1)} \otimes R_{(2)} \in U_{q} \mathfrak{g} \otimes U_{q} \mathfrak{g}
$$

which yields isomorphisms

$$
\begin{aligned}
\check{R}_{V W}: V \otimes W & \longrightarrow W \otimes V \\
v \otimes w & \longrightarrow \sum_{R} R_{(2)} w \otimes R_{(1)} v
\end{aligned}
$$

that solved the Yang-Baxter equation. Namely, it
(1) satisfies braid relations, and
(2) commutes with the action of $U_{q} \mathfrak{g}$ on $V \otimes W$.

Note: Recall that the coproduct structure on $U_{q} \mathfrak{g}$ was not symmetric.

$$
\Delta\left(q^{h}\right)=q^{h} \otimes q^{h}, \quad \Delta\left(x_{i}\right)=x_{i} \otimes K_{i}^{-1}+1 \otimes e_{i}, \quad \Delta\left(y_{i}\right)=y_{i} \otimes 1+K_{i} \otimes y_{i}
$$

So the action of $U_{q} \mathfrak{g}$ on $V^{\otimes k}$ doesn't commute with the action of S_{k} !

Quantum groups and braids

The quantum group produces an invertible element $R=\sum_{R} R_{(1)} \otimes R_{(2)} \in U_{q} \mathfrak{g} \otimes U_{q} \mathfrak{g}$ that yields an isomorphism

$$
\begin{aligned}
\check{R}_{V W}: V \otimes W & \longrightarrow W \otimes V \\
v \otimes w & \longrightarrow \sum_{R} R_{(2)} w \otimes R_{(1)} v
\end{aligned}
$$

that
(1) satisfies braid relations, and
(2) commutes with the $U_{q} \mathfrak{g}$ action on $V \otimes W$.

Quantum groups and braids

The quantum group produces an invertible element $R=\sum_{R} R_{(1)} \otimes R_{(2)} \in U_{q} \mathfrak{g} \otimes U_{q} \mathfrak{g}$ that yields an isomorphism

$$
\begin{aligned}
\check{R}_{V W}: V \otimes W & \longrightarrow W \otimes V \\
v \otimes w & \longrightarrow \sum_{R} R_{(2)} w \otimes R_{(1)} v
\end{aligned}
$$

that (1) satisfies braid relations, and
(2) commutes with the $U_{q} \mathfrak{g}$ action on $V \otimes W$.

The braid group shares a commuting action with $U_{q} \mathfrak{g}$ on $V^{\otimes k}$:

Quantum groups and braids

The quantum group produces an invertible element $R=\sum_{R} R_{(1)} \otimes R_{(2)} \in U_{q} \mathfrak{g} \otimes U_{q} \mathfrak{g}$ that yields an isomorphism

$$
\begin{aligned}
\check{R}_{V W}: V \otimes W & \longrightarrow W \otimes V \\
v \otimes w & \longrightarrow \sum_{R} R_{(2)} w \otimes R_{(1)} v
\end{aligned}
$$

that (1) satisfies braid relations, and
(2) commutes with the $U_{q} \mathfrak{g}$ action on $V \otimes W$.

The one-pole/affine braid group shares a commuting action with $U_{q} \mathfrak{g}$ on $M \otimes V^{\otimes k}$:

Quantum groups and braids

The quantum group produces an invertible element $R=\sum_{R} R_{(1)} \otimes R_{(2)} \in U_{q} \mathfrak{g} \otimes U_{q} \mathfrak{g}$ that yields an isomorphism

$$
\begin{aligned}
\check{R}_{V W}: V \otimes W & \longrightarrow W \otimes V \\
v \otimes w & \longrightarrow \sum_{R} R_{(2)} w \otimes R_{(1)} v
\end{aligned}
$$

that (1) satisfies braid relations, and
(2) commutes with the $U_{q} \mathfrak{g}$ action on $V \otimes W$.

The two-pole braid group shares a commuting action with $U_{q} \mathfrak{g}$ on $M \otimes V^{\otimes k} \otimes N$:

(Finite) Hecke algebras

Given a Lie algebra \mathfrak{g}, its Weyl group W is determined by the associated Coxeter diagram. Namely, W has generators s_{i} indexed by the vertices, and satisfies relations $s_{i}^{2}=1$ and

$$
\begin{array}{rlll}
s_{i} s_{j}=s_{j} s_{i} & \text { if } & \stackrel{i}{\circ} & \bigcirc^{j} \\
s_{i} s_{j} s_{i}=s_{j} s_{i} s_{j} & \text { if } & \stackrel{i}{\circ} & j \\
s_{i} s_{j} s_{i} s_{j}=s_{j} s_{i} s_{j} s_{i} & \text { if } & \stackrel{i}{=} & j \\
s_{i} s_{j} s_{i} s_{j} s_{i} s_{j}=s_{j} s_{i} s_{j} s_{i} s_{j} s_{i} & \text { if } & \stackrel{i}{=} & j \\
\hline
\end{array}
$$

(Finite) Hecke algebras

The Hecke algebra H associated to a Weyl group W is a deformation of W, also determined by the associated Coxeter diagram. Namely, H has generators T_{i} indexed by the vertices, and satisfies relations $\left(T_{i}-t_{i}^{1 / 2}\right)\left(T_{i}+t_{i}^{-1 / 2}\right)=0$ for some $t_{i}^{1 / 2} \in \mathbb{C}$, and

$$
\begin{aligned}
& T_{i} T_{j}=T_{j} T_{i} \quad \text { if } \\
& T_{i} T_{j} T_{i}=T_{j} T_{i} T_{j} \quad \text { if } \\
& T_{i} T_{j} T_{i} T_{j}=T_{j} T_{i} T_{j} T_{i} \quad \text { if } \\
& T_{i} T_{j} T_{i} T_{j} T_{i} T_{j}=T_{j} T_{i} T_{j} T_{i} T_{j} T_{i} \quad \text { if }
\end{aligned}
$$

(Finite) Hecke algebras

The Hecke algebra H associated to a Weyl group W is a deformation of W, also determined by the associated Coxeter diagram. Namely, H has generators T_{i} indexed by the vertices, and satisfies relations $\left(T_{i}-t_{i}^{1 / 2}\right)\left(T_{i}+t_{i}^{-1 / 2}\right)=0$ for some $t_{i}^{1 / 2} \in \mathbb{C}$, and

$$
\begin{aligned}
& T_{i} T_{j}=T_{j} T_{i} \quad \text { if } \quad \stackrel{i}{\circ} \quad \stackrel{j}{\circ} \\
& T_{i} T_{j} T_{i}=T_{j} T_{i} T_{j} \quad \text { if } \\
& T_{i} T_{j} T_{i} T_{j}=T_{j} T_{i} T_{j} T_{i} \quad \text { if } \\
& T_{i} T_{j} T_{i} T_{j} T_{i} T_{j}=T_{j} T_{i} T_{j} T_{i} T_{j} T_{i} \quad \text { if }
\end{aligned}
$$

For each $w \in W$, fix a minimal length expression $w=s_{i_{1}} \cdots s_{i_{\ell}}$, and let

$$
T_{w}=T_{i_{1}} \cdots T_{i_{\ell}}
$$

Then H has basis $\left\{T_{w} \mid w \in W\right\}$.

More diagram algebras

The Hecke algebra of type A_{k-1} is the algebra with basis given by permutation diagrams, each with a fixed choice of crossings

with multiplication given by concatenation, subject to the relations

$$
\begin{aligned}
& \left.\zeta=1 \quad \text { 久}=\left(t^{1 / 2}-t^{-1 / 2}\right)\right\rangle+1 \mid \\
& M^{\prime}=\begin{array}{r}
\prime \\
\end{array} \\
& \left(T_{i} T_{i}^{-1}=1\right) \quad\left(\left(T_{i}-t_{i}^{1 / 2}\right)\left(T_{i}+t_{i}^{-1 / 2}\right)=0\right) \quad\left(T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1}\right)
\end{aligned}
$$

Then with $t_{i}^{1 / 2}=q$ generic, this algebra encodes
$\operatorname{End}_{U_{q \mathfrak{S I}}}\left(L_{q}(\square)^{\otimes k}\right)$ for $n \geq k$. (Wenzl-1988)

More diagram algebras

The Birman-Murakami-Wenzl (BMW) algebra $B M W_{k}(q, z)$ is the algebra with basis given by Brauer diagrams, each with a fixed choice of crossings

with multiplication given by concatenation, subject to the relations

$$
\begin{aligned}
& \curlywedge=z \mid \quad\left\langle-Y=\left(q-q^{-1}\right)(\mid-\underset{\frown}{ })\right.
\end{aligned}
$$

Then with q generic and good choice of z, this algebra encodes $\operatorname{End}_{U \mathfrak{g}}\left(L(\square)^{\otimes k}\right)$ for $\mathfrak{g}=\mathfrak{s o}_{n}$ or $\mathfrak{s p} p_{n} .($ BMW - 1990)

Affine Hecke algebras

Recall from our calculations of characters, we considered the algebra

$$
\mathbb{C}[X]=\mathbb{C}\left\{X^{\lambda} \mid \lambda \in P\right\} \quad \text { with } \quad X^{\lambda} X^{\mu}=X^{\lambda+\mu}
$$

where P is the set of integral weights for \mathfrak{g} given by

$$
P=\mathbb{Z} \Omega \quad \text { with } \quad \Omega=\left\{\omega_{i} \mid i=1, \ldots, r\right\} .
$$

This algebra is isomorphic to the Laurent polynomial ring

$$
\mathbb{C}\left[X_{1}^{ \pm 1}, \ldots, X_{r}^{ \pm 1}\right] \quad \text { with } \quad X_{i}=X^{\omega_{i}-\omega_{i-1}}
$$

Affine Hecke algebras

Recall from our calculations of characters, we considered the algebra

$$
\mathbb{C}[X]=\mathbb{C}\left\{X^{\lambda} \mid \lambda \in P\right\} \quad \text { with } \quad X^{\lambda} X^{\mu}=X^{\lambda+\mu}
$$

where P is the set of integral weights for \mathfrak{g} given by

$$
P=\mathbb{Z} \Omega \quad \text { with } \quad \Omega=\left\{\omega_{i} \mid i=1, \ldots, r\right\} .
$$

This algebra is isomorphic to the Laurent polynomial ring

$$
\mathbb{C}\left[X_{1}^{ \pm 1}, \ldots, X_{r}^{ \pm 1}\right] \quad \text { with } \quad X_{i}=X^{\omega_{i}-\omega_{i-1}}
$$

The affine Hecke algebra \mathcal{H} associated to a Weyl group W is

$$
\mathcal{H}=\mathbb{C}[X] \otimes H
$$

subject to the relations

$$
T_{i} X^{\lambda}=X^{s_{i} \lambda} T_{i}+\left(t_{i}^{1 / 2}-t_{i}^{-1 / 2}\right) \frac{X^{\lambda}-X^{s_{i} \lambda}}{1-X^{-\beta_{i}}}
$$

Then H has basis $\left\{X^{\lambda} T_{w} \mid w \in W, \lambda \in P\right\}$.

Affine Hecke algebra of type $\mathfrak{g l}_{k}$

With a little bit of work, $\left(T_{i}-t_{i}^{1 / 2}\right)\left(T_{i}+t_{i}^{-1 / 2}\right), X_{i}=X^{\varepsilon_{i}}$, and

$$
T_{i} X^{\lambda}=X^{s_{i} \lambda} T_{i}+\left(t_{i}^{1 / 2}-t_{i}^{-1 / 2}\right) \frac{X^{\lambda}-X^{s_{i} \lambda}}{1-X^{-\beta_{i}}}
$$

turns into

$$
T_{i} X_{i} T_{i}=X_{i+1} \quad \text { and } \quad T_{1} X_{1} T_{1} X_{1}=X_{1} T_{1} X_{1} T_{1}
$$

Affine Hecke algebra of type $\mathfrak{g l}_{k}$

With a little bit of work, $\left(T_{i}-t_{i}^{1 / 2}\right)\left(T_{i}+t_{i}^{-1 / 2}\right), X_{i}=X^{\varepsilon_{i}}$, and

$$
T_{i} X^{\lambda}=X^{s_{i} \lambda} T_{i}+\left(t_{i}^{1 / 2}-t_{i}^{-1 / 2}\right) \frac{X^{\lambda}-X^{s_{i} \lambda}}{1-X^{-\beta_{i}}}
$$

turns into

$$
T_{i} X_{i} T_{i}=X_{i+1} \quad \text { and } \quad T_{1} X_{1} T_{1} X_{1}=X_{1} T_{1} X_{1} T_{1}
$$

So \mathcal{H} of type $\mathfrak{g l}_{k}$ is generated by one-pole braids

subject to relations

$$
\left.\grave{\zeta}=\left(t^{1 / 2}-t^{-1 / 2}\right)\right\rangle+| | \quad\left(\left(T_{i}-t_{i}^{1 / 2}\right)\left(T_{i}+t_{i}^{-1 / 2}\right)=0\right)
$$

Then with $t_{i}^{1 / 2}=q$ generic, a quotient of \mathcal{H} by certain polynomial conditions on $\mathbb{C}[X]$ encodes $\operatorname{End}_{U_{q} \mathfrak{s l}}^{n}\left(L_{q}(\lambda) \otimes L_{q}(\square)^{\otimes k}\right)$ for $n \geq k$. (Orellana-Ram 2004)

Affine Hecke algebra of type $\mathfrak{g l}_{k}$

With a little bit of work, $\left(T_{i}-t_{i}^{1 / 2}\right)\left(T_{i}+t_{i}^{-1 / 2}\right), X_{i}=X^{\varepsilon_{i}}$, and

$$
T_{i} X^{\lambda}=X^{s_{i} \lambda} T_{i}+\left(t_{i}^{1 / 2}-t_{i}^{-1 / 2}\right) \frac{X^{\lambda}-X^{s_{i} \lambda}}{1-X^{-\beta_{i}}}
$$

turns into

$$
T_{i} X_{i} T_{i}=X_{i+1} \quad \text { and } \quad T_{1} X_{1} T_{1} X_{1}=X_{1} T_{1} X_{1} T_{1}
$$

So \mathcal{H} of type $\mathfrak{g l}_{k}$ (and H of type B_{k} and $\left.C_{k}!!\right)$ is generated by one-pole braids

subject to relations

$$
\left.\grave{S}=\left(t^{1 / 2}-t^{-1 / 2}\right)\right\rangle+| | \quad\left(\left(T_{i}-t_{i}^{1 / 2}\right)\left(T_{i}+t_{i}^{-1 / 2}\right)=0\right)
$$

Then with $t_{i}^{1 / 2}=q$ generic, a quotient of \mathcal{H} by certain polynomial conditions on $\mathbb{C}[X]$ encodes $\operatorname{End}_{U_{q} \mathfrak{s l}}\left(L_{q}(\lambda) \otimes L_{q}(\square)^{\otimes k}\right)$ for $n \geq k$. (Orellana-Ram 2004)

Universal
Type B, C, D
(orthog. \& sympl.)

Hecke algebra $\because=a ̊+!!$
(gen. \& sp. linear)

Affine Hecke of type C (+twists)

Quantum groups

Lie grp/alg

Two-pole BMW

Two-pole braids䏠:

Type A

Small Type A
$\left(\mathrm{GL}_{2} \& \mathrm{SL}_{2}\right)$

One-boundary TL

$\stackrel{\stackrel{2}{\otimes}}{\stackrel{2}{\otimes}}$

