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(Very quick) introduction to quantum groups

Let q be an indeterminate. To every Lie algebra g we can associate a
Hopf algebra Uqg, called a quantum group associated to g, that is a
deformation of Ug in the sense that limq→1 Uqg = Ug.

For example, Usl2 is the algebra C[x, y, h] with relations

xy − yx = h, hx− xh = 2x, hy − yh = −2y. (1)

The associated quantum group Uqsl2 is the algebra C[x, y][[h]] with
relations

xy − yx =
qh − q−h

q − q−1
, qhxq−h = q2x, qhyq−h = q−2y. (2)
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relations

xy − yx =
qh − q−h

q − q−1
, qhxq−h = q2x, qhyq−h = q−2y. (2)

The first relation in (2) tends toward the first relation in (1) since

lim
q→1

qh − q−h

q − q−1
= lim
q→1

hqh−1 + hq−h−1

1 + q−2
=

2h

2
= h.

For the second two relations in (2), take the q derivative to get

hqh−1xq−h−qhxhq−h−1 = 2qx and hqh−1yq−h−qhyhq−h−1 = −2q−3y,

which tend toward the first two relations in (1) as q → 1.
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Relevant data
Let g one of our favorite Lie algebras. Pick a base B for the set of roots R.

The Cartan matrix with respect to B is

A = (aij)1≤i,j≤r = (〈β∨i , βj〉)α,β∈B .

Some facts:

aii = 〈β∨i , βi〉 = 2 for i = 1, . . . , r

aij = 0,−1,−2, or − 3 for i 6= j,

aij = 0 if and only if aji = 0.

Identifying h and h∗, let B∨ = {hβ∨ | β ∈ B} and P∨ = ZB∨, so that
P = ZΩ = {λ ∈ h∗ | λ(h) ∈ Z for all h ∈ P∨}.

For n ∈ Z≥0, define

[n]x =
xn − x−n

x− x−1

x→1−−−→ n

and [n]x! = [n]x[n− 1]x · · · [1]x,

with [0]x! = 1.For non-negative integers m ≥ n ≥ 0, let[
m

n

]
x

=
[m]x!

[n]x![m− n]x!

x→1−−−→
(
m

n

)
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(Very quick) introduction to quantum groups
Pick a base B = {βi | i = 1, . . . , r} for the set of roots R for Lie algebra g.
Let B∨ = {hβ∨ | β ∈ B} and P∨ = ZB∨ ⊂ h.
Let hi = hβ∨

i
, xi = xβi ∈ gβi , and yi = yβi ∈ g−βi .

The Lie algebra g is determined by the Cartan matrix (aij)
together with R in the sense that g is the Lie algebra generated by
{hi, xi, yi | i = 1, . . . , r} with relations

1. [h, h′] = 0 for all h, h′ ∈ P∨;

2. [xi, yj ] = δijhi;

3. [h, xi] = βi(h)xi for all h ∈ P∨;

4. [h, yi] = −βi(h)yi for all h ∈ P∨;

5. ad
1−aij
xi xj = 0 for i 6= j; and

6. ad
1−aij
yi yj = 0 for i 6= j.
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∑

i niβi, let Kλ =
∏
iK

ni
i .
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Hopf algebra structure

The group algebra CG is a hopf algebra with, for g ∈ G,

comultiplication ∆(g) = g ⊗ g,

counit ε(g) = 1, and

antipode S(g) = g−1.

The enveloping algebra Ug is a Hopf algebra with, for x ∈ g,

comultiplication ∆(x) = x⊗ 1 + 1⊗ x,

counit ε(x) = 0, and

antipode S(x) = −x.

The quantum group Uqg is a Hopf algebra is

comultiplication ∆(qh) = qh ⊗ qh, ∆(xi) = xi ⊗K−1i + 1⊗ ei,
and ∆(yi) = yi ⊗ 1 +Ki ⊗ yi.

counit ε(qh) = 1 and ε(xi) = ε(yi) = 0, and

antipode S(qh) = q−h, S(xi) = −xiK−1i , and
S(yi) = −K−1i yi.
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Triangular decomposition
Recall that in Ug,

U+ is the subalgebra generated by {x1, . . . , xr},
U0 is the subalgebra generated by h,

U− is the subalgebra generated by {y1, . . . , yr},

Theorem
The enveloping algebra Ug has the triangular decomposition

Ug ∼= U− ⊗ U0 ⊗ U+.

Likewise, let

U+
q be the subalgebra generated by {x1, . . . , xr},
U0
q be the subalgebra generated by P∨,

U−q be the subalgebra generated by {y1, . . . , yr},

Theorem
The quantum group has the triangular decomposition

Uqg ∼= U−q ⊗ U0
q ⊗ U+

q .



Representations
Recall: Every finite-dimensional representation V of Ug is a weight
module. A weight module is a highest weight module if it is generated by
a weight vector v+λ satisfying U+v+λ = 0. Any highest weight module is
finite-dimensional if it has highest weight in P+. The character of V is

chV =
∑
µ∈P

dim(Vµ)Xµ.

Quantum version: A Uqg-module V q is a weight module if

V q =
⊕
µ∈P

V qµ where V qµ = {v ∈ V | qhv = qµ(h)v for all h ∈ P∨}.

A weight module is a highest weight module if it is generated by a weight
vector v+λ satisfying U+

q v
+
λ = 0. (The construction of h.w. modules in

[HK, Prop. 3.2.2].)
The class of modules which are all weight modules, are all completely
reducible, and are generally tractable, is called category Oqint. The simple
modules in this class Lq(λ) are indexed by λ ∈ P+.
The character of V q is

chV q =
∑
µ∈P

dim(V qµ )Xµ.
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vector v+λ satisfying U+

q v
+
λ = 0. (The construction of h.w. modules in

[HK, Prop. 3.2.2].)
The class of modules which are all weight modules, are all completely
reducible, and are generally tractable, is called category Oqint. The simple
modules in this class Lq(λ) are indexed by λ ∈ P+.
The character of V q is

chV q =
∑
µ∈P

dim(V qµ )Xµ.



Take the limit q → 1 [HK, §3.4]

The limit as q → 1 takes

Uqg→ Ug

xi, yi,
qh − 1

q − 1
→ xi, yi, h

U−,0,+q → U−,0,+

Lq(λ)→ L(λ) for λ ∈ P+

ch(Lq(λ)) = ch(L(λ))

and preserves the Hopf algebra structure.



Some physics: 6-vertex model
Consider an infinite grid
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A configuration is an assignment of spins ε = ±1 to each edge.For
a fixed face, there are two admissible ground state configurations.
The six vertex model restricts to configurations where each vertex
has one of six configurations of spins around it.
Let V = Cv+ ⊕ Cv−. Model a window as V ⊗k.
Goal: Study endomorphisms of admissible configurations.
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R-matrices
Quantum Yang-Baxter equation: Is there an operator R in
End(V ⊗ V ) which satisfies

R12R23R12 = R23R12R23 on V ⊗ V ⊗ V,

where R12 = R⊗ 1 and R23 = 1⊗R.

Generalized result: Existence of quantum groups, and for each
quantum group, an invertible element

R =
∑
R

R(1) ⊗R(2) ∈ Uqg⊗ Uqg,

which yields isomorphisms

ŘVW : V ⊗W −→W ⊗ V
W ⊗ V

V ⊗W
that (1) satisfies braid relations, and

(2) commutes with the action on V ⊗ V .
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ŘVW : V ⊗W −→W ⊗ V
W ⊗ V

V ⊗W
that (1) satisfies braid relations, and

(2) commutes with the action on V ⊗ V .


