Math 128: Lecture 25

May 22, 2014

(Very quick) introduction to quantum groups

Let q be an indeterminate. To every Lie algebra \mathfrak{g} we can associate a Hopf algebra $U_{q} \mathfrak{g}$, called a quantum group associated to \mathfrak{g}, that is a deformation of $U \mathfrak{g}$ in the sense that $\lim _{q \rightarrow 1} U_{q} \mathfrak{g}=U \mathfrak{g}$.

(Very quick) introduction to quantum groups

Let q be an indeterminate. To every Lie algebra \mathfrak{g} we can associate a Hopf algebra $U_{q} \mathfrak{g}$, called a quantum group associated to \mathfrak{g}, that is a deformation of $U \mathfrak{g}$ in the sense that $\lim _{q \rightarrow 1} U_{q} \mathfrak{g}=U \mathfrak{g}$.

For example, $U \mathfrak{s l}_{2}$ is the algebra $\mathbb{C}[x, y, h]$ with relations

$$
\begin{equation*}
x y-y x=h, \quad h x-x h=2 x, \quad h y-y h=-2 y . \tag{1}
\end{equation*}
$$

(Very quick) introduction to quantum groups

Let q be an indeterminate. To every Lie algebra \mathfrak{g} we can associate a Hopf algebra $U_{q} \mathfrak{g}$, called a quantum group associated to \mathfrak{g}, that is a deformation of $U \mathfrak{g}$ in the sense that $\lim _{q \rightarrow 1} U_{q} \mathfrak{g}=U \mathfrak{g}$.

For example, $U \mathfrak{s l}_{2}$ is the algebra $\mathbb{C}[x, y, h]$ with relations

$$
\begin{equation*}
x y-y x=h, \quad h x-x h=2 x, \quad h y-y h=-2 y . \tag{1}
\end{equation*}
$$

The associated quantum group $U_{q} \mathfrak{s l}_{2}$ is the algebra $\mathbb{C}[x, y][[h]]$ with relations

$$
\begin{equation*}
x y-y x=\frac{q^{h}-q^{-h}}{q-q^{-1}}, \quad q^{h} x q^{-h}=q^{2} x, \quad q^{h} y q^{-h}=q^{-2} y \tag{2}
\end{equation*}
$$

(Very quick) introduction to quantum groups

For example, $U \mathfrak{s l}_{2}$ is the algebra $\mathbb{C}[x, y, h]$ with relations

$$
\begin{equation*}
x y-y x=h, \quad h x-x h=2 x, \quad h y-y h=-2 y . \tag{1}
\end{equation*}
$$

The associated quantum group $U_{q} \mathfrak{S l}_{2}$ is the algebra $\mathbb{C}[x, y][[h]]$ with relations

$$
\begin{equation*}
x y-y x=\frac{q^{h}-q^{-h}}{q-q^{-1}}, \quad q^{h} x q^{-h}=q^{2} x, \quad q^{h} y q^{-h}=q^{-2} y . \tag{2}
\end{equation*}
$$

The first relation in (2) tends toward the first relation in (1) since

$$
\lim _{q \rightarrow 1} \frac{q^{h}-q^{-h}}{q-q^{-1}}=\lim _{q \rightarrow 1} \frac{h q^{h-1}+h q^{-h-1}}{1+q^{-2}}=\frac{2 h}{2}=h .
$$

(Very quick) introduction to quantum groups

For example, $U \mathfrak{s l}_{2}$ is the algebra $\mathbb{C}[x, y, h]$ with relations

$$
\begin{equation*}
x y-y x=h, \quad h x-x h=2 x, \quad h y-y h=-2 y . \tag{1}
\end{equation*}
$$

The associated quantum group $U_{q} \mathfrak{s l}_{2}$ is the algebra $\mathbb{C}[x, y][[h]]$ with relations

$$
\begin{equation*}
x y-y x=\frac{q^{h}-q^{-h}}{q-q^{-1}}, \quad q^{h} x q^{-h}=q^{2} x, \quad q^{h} y q^{-h}=q^{-2} y . \tag{2}
\end{equation*}
$$

The first relation in (2) tends toward the first relation in (1) since

$$
\lim _{q \rightarrow 1} \frac{q^{h}-q^{-h}}{q-q^{-1}}=\lim _{q \rightarrow 1} \frac{h q^{h-1}+h q^{-h-1}}{1+q^{-2}}=\frac{2 h}{2}=h .
$$

For the second two relations in (2), take the q derivative to get $h q^{h-1} x q^{-h}-q^{h} x h q^{-h-1}=2 q x \quad$ and $\quad h q^{h-1} y q^{-h}-q^{h} y h q^{-h-1}=-2 q^{-3} y$, which tend toward the first two relations in (1) as $q \rightarrow 1$.

Relevant data

Let \mathfrak{g} one of our favorite Lie algebras. Pick a base B for the set of roots R.

Relevant data

Let \mathfrak{g} one of our favorite Lie algebras. Pick a base B for the set of roots R. The Cartan matrix with respect to B is

$$
A=\left(a_{i j}\right)_{1 \leq i, j \leq r}=\left(\left\langle\beta_{i}^{\vee}, \beta_{j}\right\rangle\right)_{\alpha, \beta \in B}
$$

Relevant data

Let \mathfrak{g} one of our favorite Lie algebras. Pick a base B for the set of roots R. The Cartan matrix with respect to B is

$$
A=\left(a_{i j}\right)_{1 \leq i, j \leq r}=\left(\left\langle\beta_{i}^{\vee}, \beta_{j}\right\rangle\right)_{\alpha, \beta \in B}
$$

Some facts:

$$
\begin{array}{lr}
a_{i i}=\left\langle\beta_{i}^{\vee}, \beta_{i}\right\rangle=2 & \text { for } i=1, \ldots, r \\
a_{i j}=0,-1,-2, \text { or }-3 & \text { for } i \neq j, \\
a_{i j}=0 \text { if and only if } a_{j i}=0 . &
\end{array}
$$

Relevant data

Let \mathfrak{g} one of our favorite Lie algebras. Pick a base B for the set of roots R. The Cartan matrix with respect to B is

$$
A=\left(a_{i j}\right)_{1 \leq i, j \leq r}=\left(\left\langle\beta_{i}^{\vee}, \beta_{j}\right\rangle\right)_{\alpha, \beta \in B}
$$

Some facts:

$$
\begin{array}{lr}
a_{i i}=\left\langle\beta_{i}^{\vee}, \beta_{i}\right\rangle=2 & \text { for } i=1, \ldots, r \\
a_{i j}=0,-1,-2, \text { or }-3 & \text { for } i \neq j \\
a_{i j}=0 \text { if and only if } a_{j i}=0 . &
\end{array}
$$

Identifying \mathfrak{h} and \mathfrak{h}^{*}, let $B^{\vee}=\left\{h_{\beta^{\vee}} \mid \beta \in B\right\}$ and $P^{\vee}=\mathbb{Z} B^{\vee}$, so that

$$
P=\mathbb{Z} \Omega=\left\{\lambda \in \mathfrak{h}^{*} \mid \lambda(h) \in \mathbb{Z} \text { for all } h \in P^{\vee}\right\}
$$

Relevant data

Let \mathfrak{g} one of our favorite Lie algebras. Pick a base B for the set of roots R.
The Cartan matrix with respect to B is

$$
A=\left(a_{i j}\right)_{1 \leq i, j \leq r}=\left(\left\langle\beta_{i}^{\vee}, \beta_{j}\right\rangle\right)_{\alpha, \beta \in B}
$$

Some facts:

$$
\begin{array}{lr}
a_{i i}=\left\langle\beta_{i}^{\vee}, \beta_{i}\right\rangle=2 & \text { for } i=1, \ldots, r \\
a_{i j}=0,-1,-2, \text { or }-3 & \text { for } i \neq j \\
a_{i j}=0 \text { if and only if } a_{j i}=0 . &
\end{array}
$$

Identifying \mathfrak{h} and \mathfrak{h}^{*}, let $B^{\vee}=\left\{h_{\beta^{\vee}} \mid \beta \in B\right\}$ and $P^{\vee}=\mathbb{Z} B^{\vee}$, so that

$$
P=\mathbb{Z} \Omega=\left\{\lambda \in \mathfrak{h}^{*} \mid \lambda(h) \in \mathbb{Z} \text { for all } h \in P^{\vee}\right\}
$$

For $n \in \mathbb{Z}_{\geq 0}$, define

$$
[n]_{x}=\frac{x^{n}-x^{-n}}{x-x^{-1}} \quad \text { and } \quad[n]_{x}!=[n]_{x}[n-1]_{x} \cdots[1]_{x}
$$

with $[0]_{x}!=1$.

Relevant data

Let \mathfrak{g} one of our favorite Lie algebras. Pick a base B for the set of roots R.
The Cartan matrix with respect to B is

$$
A=\left(a_{i j}\right)_{1 \leq i, j \leq r}=\left(\left\langle\beta_{i}^{\vee}, \beta_{j}\right\rangle\right)_{\alpha, \beta \in B}
$$

Some facts:

$$
\begin{array}{lr}
a_{i i}=\left\langle\beta_{i}^{\vee}, \beta_{i}\right\rangle=2 & \text { for } i=1, \ldots, r \\
a_{i j}=0,-1,-2, \text { or }-3 & \text { for } i \neq j \\
a_{i j}=0 \text { if and only if } a_{j i}=0 . &
\end{array}
$$

Identifying \mathfrak{h} and \mathfrak{h}^{*}, let $B^{\vee}=\left\{h_{\beta^{\vee}} \mid \beta \in B\right\}$ and $P^{\vee}=\mathbb{Z} B^{\vee}$, so that

$$
P=\mathbb{Z} \Omega=\left\{\lambda \in \mathfrak{h}^{*} \mid \lambda(h) \in \mathbb{Z} \text { for all } h \in P^{\vee}\right\}
$$

For $n \in \mathbb{Z}_{\geq 0}$, define

$$
[n]_{x}=\frac{x^{n}-x^{-n}}{x-x^{-1}} \quad \text { and } \quad[n]_{x}!=[n]_{x}[n-1]_{x} \cdots[1]_{x}
$$

with $[0]_{x}!=1$. For non-negative integers $m \geq n \geq 0$, let

$$
\left[\begin{array}{c}
m \\
n
\end{array}\right]_{x}=\frac{[m]_{x}!}{[n]_{x}![m-n]_{x}!}
$$

Relevant data

Let \mathfrak{g} one of our favorite Lie algebras. Pick a base B for the set of roots R.
The Cartan matrix with respect to B is

$$
A=\left(a_{i j}\right)_{1 \leq i, j \leq r}=\left(\left\langle\beta_{i}^{\vee}, \beta_{j}\right\rangle\right)_{\alpha, \beta \in B}
$$

Some facts:

$$
\begin{array}{lr}
a_{i i}=\left\langle\beta_{i}^{\vee}, \beta_{i}\right\rangle=2 & \text { for } i=1, \ldots, r \\
a_{i j}=0,-1,-2, \text { or }-3 & \text { for } i \neq j \\
a_{i j}=0 \text { if and only if } a_{j i}=0 . &
\end{array}
$$

Identifying \mathfrak{h} and \mathfrak{h}^{*}, let $B^{\vee}=\left\{h_{\beta^{\vee}} \mid \beta \in B\right\}$ and $P^{\vee}=\mathbb{Z} B^{\vee}$, so that

$$
P=\mathbb{Z} \Omega=\left\{\lambda \in \mathfrak{h}^{*} \mid \lambda(h) \in \mathbb{Z} \text { for all } h \in P^{\vee}\right\}
$$

For $n \in \mathbb{Z}_{\geq 0}$, define

$$
[n]_{x}=\frac{x^{n}-x^{-n}}{x-x^{-1}} \xrightarrow{x \rightarrow 1} n \quad \text { and } \quad[n]_{x}!=[n]_{x}[n-1]_{x} \cdots[1]_{x}
$$

with $[0]_{x}!=1$. For non-negative integers $m \geq n \geq 0$, let

$$
\left[\begin{array}{c}
m \\
n
\end{array}\right]_{x}=\frac{[m]_{x}!}{[n]_{x}![m-n]_{x}!} \xrightarrow{x \rightarrow 1}\binom{m}{n}
$$

(Very quick) introduction to quantum groups

Pick a base $B=\left\{\beta_{i} \mid i=1, \ldots, r\right\}$ for the set of roots R for Lie algebra \mathfrak{g}.
Let $B^{\vee}=\left\{h_{\beta \vee} \mid \beta \in B\right\}$ and $P^{\vee}=\mathbb{Z} B^{\vee} \subset \mathfrak{h}$.
Let $h_{i}=h_{\beta_{i}^{\vee}}, x_{i}=x_{\beta_{i}} \in \mathfrak{g}_{\beta_{i}}$, and $y_{i}=y_{\beta_{i}} \in \mathfrak{g}_{-\beta_{i}}$.

The Lie algebra \mathfrak{g} is determined by the Cartan matrix $\left(a_{i j}\right)$ together with R in the sense that \mathfrak{g} is the Lie algebra generated by $\left\{h_{i}, x_{i}, y_{i} \mid i=1, \ldots, r\right\}$ with relations

1. $\left[h, h^{\prime}\right]=0$ for all $h, h^{\prime} \in P^{\vee}$;
2. $\left[x_{i}, y_{j}\right]=\delta_{i j} h_{i}$;
3. $\left[h, x_{i}\right]=\beta_{i}(h) x_{i}$ for all $h \in P^{\vee}$;
4. $\left[h, y_{i}\right]=-\beta_{i}(h) y_{i}$ for all $h \in P^{\vee}$;
5. $\operatorname{ad}_{x_{i}}^{1-a_{i j}} x_{j}=0$ for $i \neq j$; and
6. $\operatorname{ad}_{y_{i}}^{1-a_{i j}} y_{j}=0$ for $i \neq j$.

(Very quick) introduction to quantum groups

Pick a base $B=\left\{\beta_{i} \mid i=1, \ldots, r\right\}$ for the set of roots R for Lie algebra \mathfrak{g}.
Let $B^{\vee}=\left\{h_{\beta \vee} \mid \beta \in B\right\}$ and $P^{\vee}=\mathbb{Z} B^{\vee} \subset \mathfrak{h}$.
Let $h_{i}=h_{\beta_{i}^{\vee}}, x_{i}=x_{\beta_{i}} \in \mathfrak{g}_{\beta_{i}}$, and $y_{i}=y_{\beta_{i}} \in \mathfrak{g}_{-\beta_{i}}$.
Let D be the diagonal matrix $\left(d_{i}\right)_{i=1, \ldots, r}$ symmetrizing the Cartan A (i.e. $D A$ is symmetric). The quantum group $U_{q} \mathfrak{g}$ is the algebra generated by $\left\{q^{h_{i}}, x_{i}, y_{i} \mid i=1, \ldots, r\right\}$ with relations

1. $q^{0}=1, q^{h} q^{h^{\prime}}=q^{h+h^{\prime}}$ for all $h, h^{\prime} \in P^{\vee}$;
$\left[h, h^{\prime}\right]=0$
2. $x_{i} y_{i}-y_{i} x_{i}=\delta_{i, j} \frac{q_{i}^{h_{i}}-q_{i}^{-h_{i}}}{q_{i}-q_{i}^{-1}}$ where $q_{i}=q^{d_{i}}$;
$\left[x_{i}, y_{j}\right]=\delta_{i j} h_{i}$
3. $q^{h} x_{i} q^{-h}=q^{\beta_{i}(h)} x_{i}$ for all $h \in P^{\vee}$;

$$
\left[h, x_{i}\right]=\beta_{i}(h) x_{i}
$$

4. $q^{h} y_{i} q^{-h}=q^{-\beta_{i}(h)} y_{i}$ for all $h \in P^{\vee}$;
$\left[h, y_{i}\right]=-\beta_{i}(h) y_{i}$
5. $\sum_{\ell=0}^{1-a_{i j}}\left[\begin{array}{c}1-a_{i j} \\ \ell\end{array}\right]_{q_{i}} x_{i}^{1-a_{i j}-\ell} x_{j} x_{i}^{\ell}=0$ for $i \neq j ; \quad \operatorname{ad}_{x_{i}}^{1-a_{i j}} x_{j}=0$
6. $\sum_{\ell=0}^{1-a_{i j}}(-1)^{\ell}\left[\begin{array}{c}1-a_{i j} \\ \ell\end{array}\right]_{q_{i}} y_{i}^{1-a_{i j}-\ell} y_{j} y_{i}^{\ell}=0$ for $i \neq j$.

$$
\operatorname{ad}_{y_{i}}^{1-a_{i j}} y_{j}=0
$$

(Very quick) introduction to quantum groups

Pick a base $B=\left\{\beta_{i} \mid i=1, \ldots, r\right\}$ for the set of roots R for Lie algebra \mathfrak{g}.
Let $B^{\vee}=\left\{h_{\beta \vee} \mid \beta \in B\right\}$ and $P^{\vee}=\mathbb{Z} B^{\vee} \subset \mathfrak{h}$.
Let $h_{i}=h_{\beta_{i}^{\vee}}, x_{i}=x_{\beta_{i}} \in \mathfrak{g}_{\beta_{i}}$, and $y_{i}=y_{\beta_{i}} \in \mathfrak{g}_{-\beta_{i}}$.
Let D be the diagonal matrix $\left(d_{i}\right)_{i=1, \ldots, r}$ symmetrizing the Cartan A (i.e. $D A$ is symmetric). The quantum group $U_{q} \mathfrak{g}$ is the algebra generated by $\left\{q^{h_{i}}, x_{i}, y_{i} \mid i=1, \ldots, r\right\}$ with relations

1. $q^{0}=1, q^{h} q^{h^{\prime}}=q^{h+h^{\prime}}$ for all $h, h^{\prime} \in P^{\vee}$;
2. $x_{i} y_{i}-y_{i} x_{i}=\delta_{i, j} \frac{q_{i}^{h_{i}}-q_{i}^{-h_{i}}}{q_{i}-q_{i}^{-1}}$ where $q_{i}=q^{d_{i}}$;

$$
\left[x_{i}, y_{j}\right]=\delta_{i j} h_{i}
$$

3. $q^{h} x_{i} q^{-h}=q^{\beta_{i}(h)} x_{i}$ for all $h \in P^{\vee}$;

$$
\left[h, x_{i}\right]=\beta_{i}(h) x_{i}
$$

4. $q^{h} y_{i} q^{-h}=q^{-\beta_{i}(h)} y_{i}$ for all $h \in P^{\vee}$;
$\left[h, y_{i}\right]=-\beta_{i}(h) y_{i}$
5. $\sum_{\ell=0}^{1-a_{i j}}\left[\begin{array}{c}1-a_{i j} \\ \ell\end{array}\right]_{q_{i}} x_{i}^{1-a_{i j}-\ell} x_{j} x_{i}^{\ell}=0$ for $i \neq j ; \quad \operatorname{ad}_{x_{i}}^{1-a_{i j}} x_{j}=0$
6. $\sum_{\ell=0}^{1-a_{i j}}(-1)^{\ell}\left[\begin{array}{c}1-a_{i j} \\ \ell\end{array}\right]_{q_{i}} y_{i}^{1-a_{i j}-\ell} y_{j} y_{i}^{\ell}=0$ for $i \neq j$.

$$
\operatorname{ad}_{y_{i}}^{1-a_{i j}} y_{j}=0
$$

Let $K_{i}=q_{i}^{h_{i}}=q^{d_{i} h_{i}}$. If $\lambda=\sum_{i} n_{i} \beta_{i}$, let $K_{\lambda}=\prod_{i} K_{i}^{n_{i}}$.

Hopf algebra structure

The group algebra $\mathbb{C} G$ is a hopf algebra with, for $g \in G$, comultiplication $\Delta(g)=g \otimes g$,

$$
\begin{array}{r}
\text { counit } \varepsilon(g)=1 \text {, and } \\
\text { antipode } S(g)=g^{-1} \text {. }
\end{array}
$$

Hopf algebra structure

The group algebra $\mathbb{C} G$ is a hopf algebra with, for $g \in G$, comultiplication $\Delta(g)=g \otimes g$,

$$
\begin{array}{r}
\text { counit } \varepsilon(g)=1 \text {, and } \\
\text { antipode } S(g)=g^{-1}
\end{array}
$$

The enveloping algebra $U \mathfrak{g}$ is a Hopf algebra with, for $x \in \mathfrak{g}$, comultiplication $\Delta(x)=x \otimes 1+1 \otimes x$,

$$
\begin{aligned}
\text { counit } \varepsilon(x) & =0 \text {, and } \\
\text { antipode } S(x) & =-x .
\end{aligned}
$$

Hopf algebra structure

The group algebra $\mathbb{C} G$ is a hopf algebra with, for $g \in G$, comultiplication $\Delta(g)=g \otimes g$,

$$
\begin{array}{r}
\text { counit } \varepsilon(g)=1 \text {, and } \\
\text { antipode } S(g)=g^{-1}
\end{array}
$$

The enveloping algebra $U \mathfrak{g}$ is a Hopf algebra with, for $x \in \mathfrak{g}$, comultiplication $\Delta(x)=x \otimes 1+1 \otimes x$,

$$
\begin{aligned}
\text { counit } \varepsilon(x) & =0 \text {, and } \\
\text { antipode } S(x) & =-x .
\end{aligned}
$$

The quantum group $U_{q} \mathfrak{g}$ is a Hopf algebra is comultiplication $\Delta\left(q^{h}\right)=q^{h} \otimes q^{h}, \Delta\left(x_{i}\right)=x_{i} \otimes K_{i}^{-1}+1 \otimes e_{i}$,

$$
\text { and } \Delta\left(y_{i}\right)=y_{i} \otimes 1+K_{i} \otimes y_{i} .
$$

counit $\varepsilon\left(q^{h}\right)=1$ and $\varepsilon\left(x_{i}\right)=\varepsilon\left(y_{i}\right)=0$, and
antipode $S\left(q^{h}\right)=q^{-h}, S\left(x_{i}\right)=-x_{i} K_{i}^{-1}$, and

$$
S\left(y_{i}\right)=-K_{i}^{-1} y_{i}
$$

Hopf algebra structure

The group algebra $\mathbb{C} G$ is a hopf algebra with, for $g \in G$, comultiplication $\Delta(g)=g \otimes g$,

$$
\begin{array}{r}
\text { counit } \varepsilon(g)=1 \text {, and } \\
\text { antipode } S(g)=g^{-1} \text {. }
\end{array}
$$

The enveloping algebra $U \mathfrak{g}$ is a Hopf algebra with, for $x \in \mathfrak{g}$, comultiplication $\Delta(x)=x \otimes 1+1 \otimes x$,

$$
\begin{aligned}
\text { counit } \varepsilon(x) & =0 \text {, and } \\
\text { antipode } S(x) & =-x .
\end{aligned}
$$

The quantum group $U_{q} \mathfrak{g}$ is a Hopf algebra is comultiplication $\Delta\left(q^{h}\right)=q^{h} \otimes q^{h}, \Delta\left(x_{i}\right)=x_{i} \otimes K_{i}^{-1}+1 \otimes e_{i}$, and $\Delta\left(y_{i}\right)=y_{i} \otimes 1+K_{i} \otimes y_{i}$.
counit $\varepsilon\left(q^{h}\right)=1$ and $\varepsilon\left(x_{i}\right)=\varepsilon\left(y_{i}\right)=0$, and
antipode $S\left(q^{h}\right)=q^{-h}, S\left(x_{i}\right)=-x_{i} K_{i}^{-1}$, and

$$
S\left(y_{i}\right)=-K_{i}^{-1} y_{i}
$$

Hopf algebra structure

The group algebra $\mathbb{C} G$ is a hopf algebra with, for $g \in G$, comultiplication $\Delta(g)=g \otimes g$,

$$
\begin{array}{r}
\text { counit } \varepsilon(g)=1 \text {, and } \\
\text { antipode } S(g)=g^{-1} \text {. }
\end{array}
$$

The enveloping algebra $U \mathfrak{g}$ is a Hopf algebra with, for $x \in \mathfrak{g}$, comultiplication $\Delta(x)=x \otimes 1+1 \otimes x$,

$$
\begin{aligned}
\text { counit } \varepsilon(x) & =0 \text {, and } \\
\text { antipode } S(x) & =-x .
\end{aligned}
$$

The quantum group $U_{q} \mathfrak{g}$ is a Hopf algebra is comultiplication $\Delta\left(q^{h}\right)=q^{h} \otimes q^{h}, \Delta\left(x_{i}\right)=x_{i} \otimes K_{i}^{-1}+1 \otimes e_{i}$, and $\Delta\left(y_{i}\right)=y_{i} \otimes 1+K_{i} \otimes y_{i}$.
counit $\varepsilon\left(q^{h}\right)=1$ and $\varepsilon\left(x_{i}\right)=\varepsilon\left(y_{i}\right)=0$, and
antipode $S\left(q^{h}\right)=q^{-h}, S\left(x_{i}\right)=-x_{i} K_{i}^{-1}$, and

$$
S\left(y_{i}\right)=-K_{i}^{-1} y_{i}
$$

Triangular decomposition

Recall that in $U \mathfrak{g}$,

$$
\begin{aligned}
& U^{+} \text {is the subalgebra generated by }\left\{x_{1}, \ldots, x_{r}\right\}, \\
& U^{0} \text { is the subalgebra generated by } \mathfrak{h}, \\
& U^{-} \text {is the subalgebra generated by }\left\{y_{1}, \ldots, y_{r}\right\},
\end{aligned}
$$

Theorem
The enveloping algebra $U \mathfrak{g}$ has the triangular decomposition

$$
U \mathfrak{g} \cong U^{-} \otimes U^{0} \otimes U^{+}
$$

Likewise, let

$$
\begin{aligned}
& U_{q}^{+} \text {be the subalgebra generated by }\left\{x_{1}, \ldots, x_{r}\right\}, \\
& U_{q}^{0} \text { be the subalgebra generated by } P^{\vee}, \\
& U_{q}^{-} \text {be the subalgebra generated by }\left\{y_{1}, \ldots, y_{r}\right\},
\end{aligned}
$$

Theorem
The quantum group has the triangular decomposition

$$
U_{q} \mathfrak{g} \cong U_{q}^{-} \otimes U_{q}^{0} \otimes U_{q}^{+} .
$$

Representations

Recall: Every finite-dimensional representation V of $U \mathfrak{g}$ is a weight module. A weight module is a highest weight module if it is generated by a weight vector v_{λ}^{+}satisfying $U^{+} v_{\lambda}^{+}=0$. Any highest weight module is finite-dimensional if it has highest weight in P^{+}. The character of V is

$$
\operatorname{ch} V=\sum_{\mu \in P} \operatorname{dim}\left(V_{\mu}\right) X^{\mu}
$$

Representations

Recall: Every finite-dimensional representation V of $U \mathfrak{g}$ is a weight module. A weight module is a highest weight module if it is generated by a weight vector v_{λ}^{+}satisfying $U^{+} v_{\lambda}^{+}=0$. Any highest weight module is finite-dimensional if it has highest weight in P^{+}. The character of V is

$$
\operatorname{ch} V=\sum_{\mu \in P} \operatorname{dim}\left(V_{\mu}\right) X^{\mu}
$$

Quantum version: A $U_{q} \mathfrak{g}$-module V^{q} is a weight module if

$$
V^{q}=\bigoplus_{\mu \in P} V_{\mu}^{q} \quad \text { where } \quad V_{\mu}^{q}=\left\{v \in V \mid q^{h} v=q^{\mu(h)} v \text { for all } h \in P^{\vee}\right\}
$$

Representations

Recall: Every finite-dimensional representation V of $U \mathfrak{g}$ is a weight module. A weight module is a highest weight module if it is generated by a weight vector v_{λ}^{+}satisfying $U^{+} v_{\lambda}^{+}=0$. Any highest weight module is finite-dimensional if it has highest weight in P^{+}. The character of V is

$$
\operatorname{ch} V=\sum_{\mu \in P} \operatorname{dim}\left(V_{\mu}\right) X^{\mu}
$$

Quantum version: A $U_{q} \mathfrak{g}$-module V^{q} is a weight module if

$$
V^{q}=\bigoplus_{\mu \in P} V_{\mu}^{q} \quad \text { where } \quad V_{\mu}^{q}=\left\{v \in V \mid q^{h} v=q^{\mu(h)} v \text { for all } h \in P^{\vee}\right\}
$$

A weight module is a highest weight module if it is generated by a weight vector v_{λ}^{+}satisfying $U_{q}^{+} v_{\lambda}^{+}=0$. (The construction of h.w. modules in [HK, Prop. 3.2.2].)

Representations

Recall: Every finite-dimensional representation V of $U \mathfrak{g}$ is a weight module. A weight module is a highest weight module if it is generated by a weight vector v_{λ}^{+}satisfying $U^{+} v_{\lambda}^{+}=0$. Any highest weight module is finite-dimensional if it has highest weight in P^{+}. The character of V is

$$
\operatorname{ch} V=\sum_{\mu \in P} \operatorname{dim}\left(V_{\mu}\right) X^{\mu}
$$

Quantum version: A $U_{q} \mathfrak{g}$-module V^{q} is a weight module if

$$
V^{q}=\bigoplus_{\mu \in P} V_{\mu}^{q} \quad \text { where } \quad V_{\mu}^{q}=\left\{v \in V \mid q^{h} v=q^{\mu(h)} v \text { for all } h \in P^{\vee}\right\}
$$

A weight module is a highest weight module if it is generated by a weight vector v_{λ}^{+}satisfying $U_{q}^{+} v_{\lambda}^{+}=0$. (The construction of h.w. modules in [HK, Prop. 3.2.2].)
The class of modules which are all weight modules, are all completely reducible, and are generally tractable, is called category $\mathcal{O}_{\text {int }}^{q}$. The simple modules in this class $L_{q}(\lambda)$ are indexed by $\lambda \in P^{+}$.

Representations

Recall: Every finite-dimensional representation V of $U \mathfrak{g}$ is a weight module. A weight module is a highest weight module if it is generated by a weight vector v_{λ}^{+}satisfying $U^{+} v_{\lambda}^{+}=0$. Any highest weight module is finite-dimensional if it has highest weight in P^{+}. The character of V is

$$
\operatorname{ch} V=\sum_{\mu \in P} \operatorname{dim}\left(V_{\mu}\right) X^{\mu}
$$

Quantum version: A $U_{q} \mathfrak{g}$-module V^{q} is a weight module if

$$
V^{q}=\bigoplus_{\mu \in P} V_{\mu}^{q} \quad \text { where } \quad V_{\mu}^{q}=\left\{v \in V \mid q^{h} v=q^{\mu(h)} v \text { for all } h \in P^{\vee}\right\}
$$

A weight module is a highest weight module if it is generated by a weight vector v_{λ}^{+}satisfying $U_{q}^{+} v_{\lambda}^{+}=0$. (The construction of h.w. modules in [HK, Prop. 3.2.2].)
The class of modules which are all weight modules, are all completely reducible, and are generally tractable, is called category $\mathcal{O}_{\text {int }}^{q}$. The simple modules in this class $L_{q}(\lambda)$ are indexed by $\lambda \in P^{+}$.
The character of V^{q} is

$$
\operatorname{ch} V^{q}=\sum_{\mu \in P} \operatorname{dim}\left(V_{\mu}^{q}\right) X^{\mu}
$$

Take the limit $q \rightarrow 1[\mathrm{HK}, \S 3.4]$

The limit as $q \rightarrow 1$ takes

$$
\begin{aligned}
U_{q} \mathfrak{g} & \rightarrow U \mathfrak{g} \\
x_{i}, y_{i}, \frac{q^{h}-1}{q-1} & \rightarrow x_{i}, y_{i}, h \\
U_{q}^{-, 0,+} & \rightarrow U^{-, 0,+} \\
L_{q}(\lambda) & \rightarrow L(\lambda) \quad \text { for } \lambda \in P^{+} \\
\operatorname{ch}\left(L_{q}(\lambda)\right) & =\operatorname{ch}(L(\lambda))
\end{aligned}
$$

and preserves the Hopf algebra structure.

Some physics: 6-vertex model

Consider an infinite grid

Some physics: 6-vertex model

Consider an infinite grid

A configuration is an assignment of spins $\epsilon= \pm 1$ to each edge.

Some physics: 6-vertex model

Consider an infinite grid

Ground states:

A configuration is an assignment of spins $\epsilon= \pm 1$ to each edge.For a fixed face, there are two admissible ground state configurations.

Some physics: 6-vertex model

Consider an infinite grid

6 configurations:

A configuration is an assignment of spins $\epsilon= \pm 1$ to each edge.For a fixed face, there are two admissible ground state configurations. The six vertex model restricts to configurations where each vertex has one of six configurations of spins around it.

Some physics: 6-vertex model

Consider an infinite grid

6 configurations:
Ground states:

A configuration is an assignment of spins $\epsilon= \pm 1$ to each edge.For a fixed face, there are two admissible ground state configurations. The six vertex model restricts to configurations where each vertex has one of six configurations of spins around it.
Let $V=\mathbb{C} v_{+} \oplus \mathbb{C} v_{-}$. Model a window as $V^{\otimes k}$.
Goal: Study endomorphisms of admissible configurations.

R-matrices

Quantum Yang-Baxter equation: Is there an operator R in $\operatorname{End}(V \otimes V)$ which satisfies

$$
R_{12} R_{23} R_{12}=R_{23} R_{12} R_{23} \quad \text { on } V \otimes V \otimes V,
$$

$$
\text { where } R_{12}=R \otimes 1 \text { and } R_{23}=1 \otimes R \text {. }
$$

R-matrices

Quantum Yang-Baxter equation: Is there an operator R in $\operatorname{End}(V \otimes V)$ which satisfies

$$
R_{12} R_{23} R_{12}=R_{23} R_{12} R_{23} \quad \text { on } V \otimes V \otimes V,
$$

where $R_{12}=R \otimes 1$ and $R_{23}=1 \otimes R$.
Generalized result: Existence of quantum groups, and for each quantum group, an invertible element

$$
R=\sum_{R} R_{(1)} \otimes R_{(2)} \in U_{q} \mathfrak{g} \otimes U_{q} \mathfrak{g}
$$

which yields isomorphisms

$$
\check{R}_{V W}: V \otimes W \longrightarrow W \otimes V
$$

that
(1) satisfies braid relations, and
(2) commutes with the action on $V \otimes V$.

