Math 128: Lecture 24

May 21, 2014

Diagram algebras

A diagram algebra has vector space the linear span of (some class of) diagrams on $2 k$ vertices, which can be

1. graphs with certain conditions;
2. decorated graphs with certain conditions;
3. braids, sometimes with punctures;
4. tangles, sometimes with punctures; etc..

Diagram algebras

A diagram algebra has vector space the linear span of (some class of) diagrams on $2 k$ vertices, which can be

1. graphs with certain conditions;
2. decorated graphs with certain conditions;
3. braids, sometimes with punctures;
4. tangles, sometimes with punctures; etc..

In any case, you arrange $2 k$ vertices two rows, and establish connections between them according to certain conditions:

Diagram algebras

A diagram algebra has vector space the linear span of (some class of) diagrams on $2 k$ vertices, which can be

1. graphs with certain conditions;
2. decorated graphs with certain conditions;
3. braids, sometimes with punctures;
4. tangles, sometimes with punctures; etc..

In any case, you arrange $2 k$ vertices two rows, and establish connections between them according to certain conditions:

The multiplication is given by concatenation, with rules for resolving new artifacts arriving in the diagrams.

Examples of diagram algebras

Our favorite examples encode endomorphisms of a tensor space that commute with the action of another algebra.

Example 1: The symmetric group S_{k} as diagrams:

Examples of diagram algebras

Our favorite examples encode endomorphisms of a tensor space that commute with the action of another algebra.

Example 1: The symmetric group S_{k} as diagrams:

Examples of diagram algebras

Our favorite examples encode endomorphisms of a tensor space that commute with the action of another algebra.

Example 1: The symmetric group S_{k} as diagrams:

Examples of diagram algebras

Our favorite examples encode endomorphisms of a tensor space that commute with the action of another algebra.

Example 1: The symmetric group S_{k} as diagrams:

Examples of diagram algebras

Our favorite examples encode endomorphisms of a tensor space that commute with the action of another algebra.

Example 1: The symmetric group S_{k} as diagrams:

These diagrams encode endomorphisms of $L(\square)^{\otimes k}$ that commute with the action of $U \mathfrak{s l}_{n}, U \mathfrak{g l}_{n}, \mathbb{C S L}_{n}$, and $\mathbb{C G L}_{n}$.

Examples of diagram algebras

Our favorite examples encode endomorphisms of a tensor space that commute with the action of another algebra.

Example 1: The Temperley-Lieb algebra $T L_{k}(z)$, given by non-crossing pairings:

Examples of diagram algebras

Our favorite examples encode endomorphisms of a tensor space that commute with the action of another algebra.

Example 1: The Temperley-Lieb algebra $T L_{k}(z)$, given by non-crossing pairings:

Examples of diagram algebras

Our favorite examples encode endomorphisms of a tensor space that commute with the action of another algebra.

Example 1: The Temperley-Lieb algebra $T L_{k}(z)$, given by non-crossing pairings:

Examples of diagram algebras

Our favorite examples encode endomorphisms of a tensor space that commute with the action of another algebra.

Example 1: The Temperley-Lieb algebra $T L_{k}(z)$, given by non-crossing pairings:

Examples of diagram algebras

Our favorite examples encode endomorphisms of a tensor space that commute with the action of another algebra.

Example 1: The Temperley-Lieb algebra $T L_{k}(z)$, given by non-crossing pairings:

When $z=2$, these diagrams encode endomorphisms of $L(\square)^{\otimes k}$ that commute with the action of $U \mathfrak{s l}_{2}, U \mathfrak{g l}_{2}, \mathbb{C S L}_{2}$, and $\mathbb{C G L}_{2}$.

Last time:

The Temperley-Lieb algebra $T L_{k}(z)$ is generated over $\mathbb{C}\left[z^{ \pm 1}\right]$ by e_{1}, \ldots, e_{k-1} with relations

$$
e_{i}^{2}=z e_{i}, \quad e_{i} e_{i \pm 1} e_{i}=e_{i}, \quad e_{i} e_{j}=e_{j} e_{i} \text { for }|i-j|>1
$$

Last time:

The Temperley-Lieb algebra $T L_{k}(z)$ is generated over $\mathbb{C}\left[z^{ \pm 1}\right]$ by e_{1}, \ldots, e_{k-1} with relations

$$
e_{i}^{2}=z e_{i}, \quad e_{i} e_{i \pm 1} e_{i}=e_{i}, \quad e_{i} e_{j}=e_{j} e_{i} \text { for }|i-j|>1 .
$$

Define the action of $T L_{k}(2)$ on $L(\square)^{\otimes k}$ via the action of $\mathbb{C} S_{k}$ by

$$
[\cdots \cdot \underset{i=1}{\overbrace{i+1}^{i+1}} \cdot \cdots]=e_{i}=1-s_{i}=2 p_{\boxminus}^{(i)} .
$$

Then since $T L_{k}(2)=\mathbb{C} S_{k} /\left\langle p_{\text {首 }}^{(i)} \mid i=1, \ldots, k-2\right\rangle$, we have $T L_{k}$ centralizes $U \mathfrak{s l}_{2}$ in $\operatorname{End}\left(L(\square){ }^{\otimes k}\right)$.

Last time:

The Temperley-Lieb algebra $T L_{k}(z)$ is generated over $\mathbb{C}\left[z^{ \pm 1}\right]$ by e_{1}, \ldots, e_{k-1} with relations

$$
e_{i}^{2}=z e_{i}, \quad e_{i} e_{i \pm 1} e_{i}=e_{i}, \quad e_{i} e_{j}=e_{j} e_{i} \text { for }|i-j|>1
$$

Define the action of $T L_{k}(2)$ on $L(\square)^{\otimes k}$ via the action of $\mathbb{C} S_{k}$ by

$$
\cdot \cdots \cdot \overbrace{i+1}^{\overbrace{i+1}^{i+1}} \cdot \cdots]=e_{i}=1-s_{i}=2 p_{\mathrm{b}}^{(i)} .
$$

Then since $T L_{k}(2)=\mathbb{C} S_{k} /\left\langle p_{\text {首 }}^{(i)} \mid i=1, \ldots, k-2\right\rangle$, we have $T L_{k}$ centralizes $U \mathfrak{s l}_{2}$ in $\operatorname{End}\left(L(\square){ }^{\otimes k}\right)$.

For $U \mathfrak{s l}_{2}, L(\boxminus)=L(\emptyset)$, so e_{i} is really the projection into the trivial component!

Fundamental and dominant integral weights

Type B_{r}, C_{r}, and D_{r} :
$\omega_{i}=\varepsilon_{1}+\cdots+\varepsilon_{i} \quad$ for $i=1, \ldots r-1$ (for types B_{r}, C_{r}) or $r-2\left(\right.$ for type $\left.D_{r}\right)$ and

$$
P^{+}=\left\{\lambda_{1} \varepsilon_{1}+\cdots+\lambda_{r} \varepsilon_{r}\left|\lambda_{1} \geq \lambda_{2} \geq \cdots \geq\left|\lambda_{r}\right| \geq 0 \text { and } *\right\} \text {, where. } .\right.
$$

Type $B_{r}: \omega_{r}=\frac{1}{2}\left(\varepsilon_{1}+\cdots+\varepsilon_{r}\right)$, so

$$
*: \quad \lambda_{r} \geq 0 \text { and } \lambda_{i} \in \mathbb{Z} \text { for all } i \text { or } \lambda_{i} \in \mathbb{Z}+\frac{1}{2} \text { for all } i .
$$

So $P^{+}=\left\{\right.$part'ns with no more than r parts, shifted by 0 or $\left.\frac{1}{2}\right\}$.
Type $C_{r}: \omega_{r}=\varepsilon_{1}+\cdots+\varepsilon_{r}$, so

$$
\text { *: } \quad \lambda_{r} \geq 0 \text { and } \lambda_{i} \in \mathbb{Z} \text { for all } i .
$$

So $P^{+}=\{$part'ns with no more than r parts $\}$.
Type $D_{r}: \omega_{r-1}=\frac{1}{2}\left(\varepsilon_{1}+\cdots+\varepsilon_{r-1}-\varepsilon_{r}\right)$ and $\omega_{r}=\frac{1}{2}\left(\varepsilon_{1}+\cdots+\varepsilon_{r}\right)$, so
*: $\quad \lambda_{i} \in \mathbb{Z}$ for all i or $\lambda_{i} \in \mathbb{Z}+\frac{1}{2}$ for all i.
So $P^{+}=\left\{B_{r}\right.$ part'ns with last row marked with $\left.\pm\right\}$.

In all cases B_{r}, C_{r}, D_{r}, when λ isn't too tall

$$
L(\lambda) \otimes L(\square)=\bigoplus_{\mu \in \lambda^{ \pm}} L(\mu),
$$

where
$\lambda^{ \pm}=\{$"partitions" obtained from λ by adding or removing a box $\}$.

In all cases B_{r}, C_{r}, D_{r}, when λ isn't too tall

$$
L(\lambda) \otimes L(\square)=\bigoplus_{\mu \in \lambda^{ \pm}} L(\mu),
$$

where
$\lambda^{ \pm}=\{$"partitions" obtained from λ by adding or removing a box $\}$.
So for $r \gg 0, L(\square) \otimes L(\square)=L(\square) \oplus L(\boxminus) \oplus L(\emptyset)$.

In all cases B_{r}, C_{r}, D_{r}, when λ isn't too tall

$$
L(\lambda) \otimes L(\square)=\bigoplus_{\mu \in \lambda^{ \pm}} L(\mu),
$$

where
$\lambda^{ \pm}=\{$"partitions" obtained from λ by adding or removing a box $\}$.
So for $r \gg 0, L(\square) \otimes L(\square)=L(\square) \oplus L(\boxminus) \oplus L(\emptyset)$.
Let

$$
s_{i}: v_{j_{i}} \otimes v_{j_{i+1}} \rightarrow v_{j_{i+1}} \otimes v_{j_{i}} . \quad \text { and } \quad e_{i}=n p_{\emptyset}^{(i)}
$$

where $n=2 r+1$ (in type B_{r}) or $2 r$ (in types C_{r} or D_{r}).

In all cases B_{r}, C_{r}, D_{r}, when λ isn't too tall

$$
L(\lambda) \otimes L(\square)=\bigoplus_{\mu \in \lambda^{ \pm}} L(\mu),
$$

where
$\lambda^{ \pm}=\{$"partitions" obtained from λ by adding or removing a box $\}$.
So for $r \gg 0, L(\square) \otimes L(\square)=L(\square) \oplus L(\boxminus) \oplus L(\emptyset)$.
Let

$$
s_{i}: v_{j_{i}} \otimes v_{j_{i+1}} \rightarrow v_{j_{i+1}} \otimes v_{j_{i}} . \quad \text { and } \quad e_{i}=n p_{\emptyset}^{(i)}
$$

where $n=2 r+1$ (in type B_{r}) or $2 r$ (in types C_{r} or D_{r}).
Fix $\epsilon= \pm 1$. The Brauer algebra $B_{k}(\epsilon, z)$ is generated over $C=\mathbb{C}\left[z^{ \pm 1}\right]$ by $C S_{k}=C\left\langle s_{1}, \ldots, s_{k-1}\right\rangle$ and $T L_{k}(z)=C\left\langle e_{1}, \ldots, e_{k-1}\right\rangle$, with additional relations

$$
\begin{gathered}
e_{i} s_{i}=s_{i} e_{i}=\epsilon e_{i}, \quad e_{i} s_{j}=s_{j} e_{i} \text { for }|i-j|>1 \\
e_{i} s_{i \pm 1} e_{i}=\epsilon e_{i}, \quad s_{i} e_{i+1} e_{i}=s_{i+1} e_{i}, \quad \text { and } \quad e_{i+1} e_{i} s_{i+1}=e_{i+1} s_{i}
\end{gathered}
$$

In all cases B_{r}, C_{r}, D_{r}, when λ isn't too tall

$$
L(\lambda) \otimes L(\square)=\bigoplus_{\mu \in \lambda^{ \pm}} L(\mu),
$$

where
$\lambda^{ \pm}=\{$"partitions" obtained from λ by adding or removing a box $\}$.
So for $r \gg 0, L(\square) \otimes L(\square)=L(\square) \oplus L(\boxminus) \oplus L(\emptyset)$.
Let

$$
s_{i}: v_{j_{i}} \otimes v_{j_{i+1}} \rightarrow v_{j_{i+1}} \otimes v_{j_{i}} . \quad \text { and } \quad e_{i}=n p_{\emptyset}^{(i)}
$$

where $n=2 r+1$ (in type B_{r}) or $2 r$ (in types C_{r} or D_{r}).
Fix $\epsilon= \pm 1$. The Brauer algebra $B_{k}(\epsilon, z)$ is generated over $C=\mathbb{C}\left[z^{ \pm 1}\right]$ by $C S_{k}=C\left\langle s_{1}, \ldots, s_{k-1}\right\rangle$ and $T L_{k}(z)=C\left\langle e_{1}, \ldots, e_{k-1}\right\rangle$, with additional relations

$$
\begin{gathered}
e_{i} s_{i}=s_{i} e_{i}=\epsilon e_{i}, \quad e_{i} s_{j}=s_{j} e_{i} \text { for }|i-j|>1 \\
e_{i} s_{i \pm 1} e_{i}=\epsilon e_{i}, \quad s_{i} e_{i+1} e_{i}=s_{i+1} e_{i}, \quad \text { and } \quad e_{i+1} e_{i} s_{i+1}=e_{i+1} s_{i}
\end{gathered}
$$

$B_{k}(\epsilon, z)$ centralizes $U \mathfrak{g}$ in $\operatorname{End}\left(L(\square)^{\otimes k}\right)$ when $z=n, \epsilon=\left\{\begin{array}{cl}1 & \mathfrak{g}=B_{r}, D_{r}, \\ -1 & \mathfrak{g}=C_{r} .\end{array}\right.$

Adjusting the tensor space

Let \mathfrak{g} have basis $\mathcal{B}=\left\{b_{1}, \ldots, b_{d}\right\}$, and dual basis $\mathcal{B}^{*}=\left\{b_{1}^{*}, \ldots, b_{d}^{*}\right\}$ with respect to \langle,$\rangle .$

Recall the Casismir element, given by

$$
\kappa=\sum_{i} b_{i} b_{i}^{*} \in U \mathfrak{g}
$$

is central and doesn't depend on the choice of basis.

Adjusting the tensor space

Let \mathfrak{g} have basis $\mathcal{B}=\left\{b_{1}, \ldots, b_{d}\right\}$, and dual basis $\mathcal{B}^{*}=\left\{b_{1}^{*}, \ldots, b_{d}^{*}\right\}$ with respect to \langle,$\rangle .$

Recall the Casismir element, given by

$$
\kappa=\sum_{i} b_{i} b_{i}^{*} \in U \mathfrak{g}
$$

is central and doesn't depend on the choice of basis. Similarly, we can show that the split Casimir element

$$
\gamma=\sum_{i} b_{i} \otimes b_{i}^{*} \in U \mathfrak{g} \otimes U \mathfrak{g}
$$

is independent of choice of basis, and so $\sum_{i} b_{i} \otimes b_{i}^{*}=\sum_{i} b_{i}^{*} \otimes b_{i}$.

Adjusting the tensor space

Let \mathfrak{g} have basis $\mathcal{B}=\left\{b_{1}, \ldots, b_{d}\right\}$, and dual basis $\mathcal{B}^{*}=\left\{b_{1}^{*}, \ldots, b_{d}^{*}\right\}$ with respect to \langle,$\rangle .$

Recall the Casismir element, given by

$$
\kappa=\sum_{i} b_{i} b_{i}^{*} \in U \mathfrak{g}
$$

is central and doesn't depend on the choice of basis. Similarly, we can show that the split Casimir element

$$
\gamma=\sum_{i} b_{i} \otimes b_{i}^{*} \in U \mathfrak{g} \otimes U \mathfrak{g}
$$

is independent of choice of basis, and so $\sum_{i} b_{i} \otimes b_{i}^{*}=\sum_{i} b_{i}^{*} \otimes b_{i}$. Namely,

$$
\Delta(\kappa)=\sum_{i}\left(b_{i} \otimes 1+1 \otimes b_{i}\right)\left(b_{i}^{*} \otimes 1+1 \otimes b_{i}^{*}\right)=\kappa \otimes 1+1 \otimes \kappa+2 \gamma .
$$

Adjusting the tensor space

Let \mathfrak{g} have basis $\mathcal{B}=\left\{b_{1}, \ldots, b_{d}\right\}$, and dual basis $\mathcal{B}^{*}=\left\{b_{1}^{*}, \ldots, b_{d}^{*}\right\}$ with respect to \langle,$\rangle .$ The split Casimir element is

$$
\gamma=\sum_{i} b_{i} \otimes b_{i}^{*}=\sum_{i} b_{i}^{*} \otimes b_{i},
$$

so that

$$
\Delta(\kappa)=\sum_{i}\left(b_{i} \otimes 1+1 \otimes b_{i}\right)\left(b_{i}^{*} \otimes 1+1 \otimes b_{i}^{*}\right)=\kappa \otimes 1+1 \otimes \kappa+2 \gamma .
$$

Adjusting the tensor space

Let \mathfrak{g} have basis $\mathcal{B}=\left\{b_{1}, \ldots, b_{d}\right\}$, and dual basis $\mathcal{B}^{*}=\left\{b_{1}^{*}, \ldots, b_{d}^{*}\right\}$ with respect to \langle,$\rangle .$ The split Casimir element is

$$
\gamma=\sum_{i} b_{i} \otimes b_{i}^{*}=\sum_{i} b_{i}^{*} \otimes b_{i},
$$

so that

$$
\Delta(\kappa)=\sum_{i}\left(b_{i} \otimes 1+1 \otimes b_{i}\right)\left(b_{i}^{*} \otimes 1+1 \otimes b_{i}^{*}\right)=\kappa \otimes 1+1 \otimes \kappa+2 \gamma .
$$

Homework:

1. $\kappa \otimes 1$ and $\Delta(\kappa)$ have commuting actions on $M \otimes N$.
2. In type A_{r}, κ acts on the irreducible module $L(\lambda)$ by the constant

$$
\langle\lambda, \lambda+2 \rho\rangle=2 \sum_{\text {box } \in \lambda} c(\text { box })+(r+1)|\lambda|+\frac{|\lambda|^{2}}{r+1}
$$

where the content of a box in a partition λ is

$$
c(\text { box })=\operatorname{row}(\text { box })-\operatorname{col}(\text { box }) .
$$

3. Calculate the action of $\Delta(\kappa)-\kappa \otimes 1$ on the $L(\mu)$ in $L(\lambda) \otimes L(\square)$, giving the answer in terms of the content of the box added.

Adjusting the tensor space - Type A_{r} [Lu88], [KR02]

The polynomial ring $\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{k}\right]=\mathbb{C}[x]$ has an action by $\mathbb{C} S_{k}$ by

$$
w \cdot\left(x_{1}^{c_{1}} \cdots x_{k}^{c_{k}}\right)=x_{1}^{c_{w^{-1}(1)}} \cdots x_{k}^{c_{w^{-1}(k)}}
$$

write $x^{\mathbf{c}}=x_{1}^{c_{1}} \cdots x_{k}^{c_{k}}$ and $w x^{\mathbf{c}}=x^{w \mathbf{c}}$ for short.

Adjusting the tensor space - Type A_{r} [Lu88], [KR02]

The polynomial ring $\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{k}\right]=\mathbb{C}[x]$ has an action by $\mathbb{C} S_{k}$ by

$$
w \cdot\left(x_{1}^{c_{1}} \cdots x_{k}^{c_{k}}\right)=x_{1}^{c_{w^{-1}(1)}} \cdots x_{k}^{c_{w^{-1}(k)}}
$$

write $x^{\mathbf{c}}=x_{1}^{c_{1}} \cdots x_{k}^{c_{k}}$ and $w x^{\mathbf{c}}=x^{w \mathbf{c}}$ for short.
The graded Hecke algebra of type A or the degenerate affine Hecke algebra of type $\mathrm{A} \mathbb{H}_{k}$ is

$$
\mathbb{H}_{k}=\mathbb{C}[x] \otimes \mathbb{C} S_{k}
$$

with additional relations

$$
s_{i} x^{\mathbf{c}}=x^{s_{i} \mathbf{c}} s_{i}-\frac{x^{\mathbf{c}}-x^{s_{i} \mathbf{c}}}{x_{i}-x_{i+1}}
$$

Adjusting the tensor space - Type A_{r} [Lu88], [KR02]

The polynomial ring $\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{k}\right]=\mathbb{C}[x]$ has an action by $\mathbb{C} S_{k}$ by

$$
w \cdot\left(x_{1}^{c_{1}} \cdots x_{k}^{c_{k}}\right)=x_{1}^{c_{w^{-1}(1)}} \cdots x_{k}^{c_{w^{-1}(k)}}
$$

write $x^{\mathbf{c}}=x_{1}^{c_{1}} \cdots x_{k}^{c_{k}}$ and $w x^{\mathbf{c}}=x^{w \mathbf{c}}$ for short.
The graded Hecke algebra of type A or the degenerate affine Hecke algebra of type $\mathrm{A} \mathbb{H}_{k}$ is

$$
\mathbb{H}_{k}=\mathbb{C}[x] \otimes \mathbb{C} S_{k}
$$

with additional relations

$$
s_{i} x^{\mathbf{c}}=x^{s_{i} \mathbf{c}} s_{i}-\frac{x^{\mathbf{c}}-x^{s_{i} \mathbf{c}}}{x_{i}-x_{i+1}}
$$

This is equivalent to

$$
s_{i} x_{i}=x_{i+1} s_{i}-1 \quad \text { and } \quad s_{i} x_{j}=x_{j} s_{i} \text { for } j \neq i, i+1
$$

Adjusting the tensor space - Type A_{r} [DRV1, DRV2]

The graded Hecke algebra of type A is
$\mathbb{H}_{k}=\mathbb{C}[x] \otimes \mathbb{C} S_{k} /\left\langle s_{i} x_{i}=x_{i+1} s_{i}-1, s_{i} x_{j}=x_{j} s_{i}\right.$ for $\left.j \neq i, i+1\right\rangle$.
For $\lambda \in P^{+}, \mathbb{H}_{k}$ acts on
$L(\lambda) \otimes L(\square)^{\otimes k}=\mathbb{C}\left\{u_{j} \otimes v_{j_{1}} \otimes \cdots \otimes v_{j_{k}} \left\lvert\, \begin{array}{c}j=1, \ldots, \operatorname{dim}(L(\lambda)), \\ j_{i}=1, \ldots, r+1\end{array}\right.\right\}$
by

$$
s_{i}: v_{j_{i}} \otimes v_{j_{i+1}} \rightarrow v_{j_{i+1}} \otimes v_{j_{i}}
$$

as before, and

$$
x_{i}=\Delta(\kappa) \otimes 1-\kappa \otimes 1 \otimes 1
$$

on

$$
\left(L(\lambda) \otimes L(\square)^{\otimes i-1}\right) \otimes L(\square) \otimes\left(L(\square)^{\otimes k-i}\right) .
$$

Adjusting the tensor space - Type B_{r} [Na96], [DRV1], [DRV2]

The degenerate affine Birman-Murakami-Wenzl algebra $\mathbb{B}_{k}\left(\epsilon, z_{0}, z_{1}, z_{2}, \ldots\right)$ is

$$
\begin{gathered}
\mathbb{H}_{k}=\mathbb{C}[x] \otimes B_{k}\left(\epsilon, z_{0}\right) \\
s_{i} x_{i}=x_{i+1} s_{i}-\left(1-e_{i}\right) \quad\left(x_{i}+x_{i+1}\right) e_{i}=e_{i}\left(x_{i}+x_{i+1}\right)=0, \\
e_{1} x_{1}^{\ell} e_{i}=z_{\ell} e_{1}, \\
e_{i} x_{j}=x_{j} e_{i} \text { for } j \neq i, i+1, \quad s_{i} x_{j}=x_{j} s_{i} \text { for } j \neq i, i+1 .
\end{gathered}
$$

Adjusting the tensor space - Type B_{r} [Na96], [DRV1], [DRV2]

The degenerate affine Birman-Murakami-Wenzl algebra $\mathbb{B}_{k}\left(\epsilon, z_{0}, z_{1}, z_{2}, \ldots\right)$ is

$$
\begin{gathered}
\mathbb{H}_{k}=\mathbb{C}[x] \otimes B_{k}\left(\epsilon, z_{0}\right) \\
s_{i} x_{i}=x_{i+1} s_{i}-\left(1-e_{i}\right) \quad\left(x_{i}+x_{i+1}\right) e_{i}=e_{i}\left(x_{i}+x_{i+1}\right)=0, \\
e_{1} x_{1}^{\ell} e_{i}=z_{\ell} e_{1}, \\
e_{i} x_{j}=x_{j} e_{i} \text { for } j \neq i, i+1, \quad s_{i} x_{j}=x_{j} s_{i} \text { for } j \neq i, i+1 .
\end{gathered}
$$

$\mathbb{B}_{k}\left(\epsilon, z_{0}, z_{1}, z_{2}, \ldots\right)$ acts on $L(\lambda) \otimes L(\square)^{\otimes k}$ for appropriate choices of $\epsilon, z_{0}, z_{1}, \ldots$, and centralizes the action of $U \mathfrak{g}$ for $\mathfrak{g}=B_{r}, C_{r}$, or D_{r}.

