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Diagram algebras
A diagram algebra has vector space the linear span of (some class
of) diagrams on 2k vertices, which can be
1. graphs with certain conditions;
2. decorated graphs with certain conditions;
3. braids, sometimes with punctures;

4. tangles, sometimes with punctures; etc..
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A diagram algebra has vector space the linear span of (some class
of) diagrams on 2k vertices, which can be
1. graphs with certain conditions;
2. decorated graphs with certain conditions;
3. braids, sometimes with punctures;
4. tangles, sometimes with punctures; etc..

In any case, you arrange 2k vertices two rows, and establish
connections between them according to certain conditions:

The multiplication is given by concatenation, with rules for
resolving new artifacts arriving in the diagrams.
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Examples of diagram algebras

Our favorite examples encode endomorphisms of a tensor space
that commute with the action of another algebra.

Example 1: The symmetric group Sj as diagrams:
Vj1 @ Vjz ® Vi3 ® Vjs @ Vjs

Vip ® Vis ® Viz ® Vig ® Vig

>< >%< Vip ® Vig ® Vig ® Vig ® Vis

Vip ® Vip ® Vizg ® Vig ® Vig

These diagrams encode endomorphisms of L(0)®* that commute
with the action of Usl,, Ugl,,, CSL,,, and CGL,,.
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Examples of diagram algebras

Our favorite examples encode endomorphisms of a tensor space
that commute with the action of another algebra.

Example 1: The Temperley-Lieb algebra T'Lj(z), given by
non-crossing pairings:

Vip ® Vig ® Vig ® Vig ® Vi
Vi3 @ Viz ® Vizg ® Vig ® Vis

When z = 2, these diagrams encode endomorphisms of L(0)®*
that commute with the action of Usly, Ugly, CSLy, and CGLs.



Last time:

The Temperley-Lieb algebra T'Ly(z) is generated over C[z1] by
e1,...,eL_1 with relations

2 . .
€, = %€, €;€;+1€; = €4, eiej = ejei for |’L — ]| > 1.
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Then since T'Ly(2) = (CSk/<péi) |i=1,...,k—2), we have T'Lj

centralizes Usly in End(L(D)®*).
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The Temperley-Lieb algebra T'Ly(z) is generated over C[z1] by
e1,...,eL_1 with relations

2 . .
€, = %€, €;€;+1€; = €4, eiej = ejei for |’L — ]| > 1.

Define the action of T'Lj(2) on L(0)®* via the action of CS, by

i 1+1

-] 21 '
— :eizl—si:2p5.
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Then since T'Ly(2) = (CSk/<péi) |i=1,...,k—2), we have T'Lj
centralizes Usly in End(L(D)®*).

For Usly, L(H) = L(0), so e; is really the projection into the trivial
component!



Fundamental and dominant integral weights
Type B,.,C,, and D,

wi =¢e1+---+e; fori=1,...r—1 (for types B,,C,) or r—2 (for type D,.)
and
Pt ={\er+-+M& | A1 > A2 >--->|\] >0 and x}, where. ..
Type B, w, = 2(e1+ -+ +¢,), s0
1
x: Ar>0and )\iGZforaIIior)\iGZ+§foralli.
So P = { part’ns with no more than r parts, shifted by 0 or % .

Type C): wp,=¢e1+ -+ ¢, SO
x: A.>0and \; € Z for all 4.

So P = { part'ns with no more than r parts }.
Type D,: w,_1 = %(51 +--+e—1—¢r) and w, = %(51 +---+¢&.), 50
1
* )\ieroraIIior)\ieZ—i—iforalli.

So Pt ={ B, part'ns with last row marked with + }.
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L) ®LE) = @ Lw,
HENE
where
A = { “partitions” obtained from X by adding or removing a box }.

So for r >> 0, L(0) @ L(O) = L({m) & LH) @ L().

Let ,
8; U @Uj, = V5L, Uy, and e; = npéz),
where n. = 2r + 1 (in type B,.) or 2r (in types C,. or D,.).

Fix € = +1. The Brauer algebra By(e, z) is generated over C' = C[z*!]
by CSr = C(s1,...,8k-1) and TLg(z) = C{e1,...,ex_1), with
additional relations

eis; = s;e; = €e;, €;8; = s;e; for |t — j| > 1,
€;Si+1€; = €€,  S;€i4+1€; = Si4+16€4, and  €;11€;8i+1 = €j+15;-

1 g=DbB;,D,

By (e, ) centralizes Ug in End(L(D)®*%) when z =n, ¢ = { . o
—_ g = .



Adjusting the tensor space
Let g have basis B = {b1,...,bq}, and dual basis B* = {b7,..., b} with respect to (,).

Recall the Casismir element, given by
k= bib; €Ug
i

is central and doesn't depend on the choice of basis.
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Adjusting the tensor space
Let g have basis B = {b1,...,bq}, and dual basis B* = {b7,..., b} with respect to (,).

Recall the Casismir element, given by
k= bib; €Ug
i

is central and doesn't depend on the choice of basis. Similarly, we can
show that the split Casimir element

Y=Y bi®b cUgeUg

is independent of choice of basis, and so ). b; ® by = >, b7 ® b;.
Namely,

AR) = (@1 +10b)b @1 +10b) =k 1+1®k+27.

%



Adjusting the tensor space

Let g have basis B = {b1,...,bq}, and dual basis B* = {b7,..., b} with respect to (,).
The split Casimir element is

Y=Y _bi@b =) b ®b;,
[ 7
so that
AlR) =) (b @1+1@b)(b; @14+10b) =k @1+ 1@ K+ 2.
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Adjusting the tensor space

Let g have basis B = {b1,...,bq}, and dual basis B* = {b7,..., b} with respect to (,).
The split Casimir element is

Y=Y _bi@b =) b ®b;,
i i

so that

AlR) =) (b @1+1@b)(b; @14+10b) =k @1+ 1@ K+ 2.
Homework:

1. k®1 and A(k) have commuting actions on M ® N.

2. In type A,, & acts on the irreducible module L(\) by the constant
AP
r+1’

(MA+20) =2 > c(box) + (r+ 1A+
box€eA
where the content of a box in a partition A is

¢(box) = row(box) — col(box).

3. Calculate the action of A(k) —x ® 1 on the L(u) in L(\) ® L(D),
giving the answer in terms of the content of the box added.



Adjusting the tensor space - Type A, [Lu88], [KR02]

The polynomial ring Clzy, xa, ..., zx] = C[z] has an action by
CS}; by
we (@S = gD g T

write ¢ = z{" - - - 7" and wx® = 2™ for short.
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Adjusting the tensor space - Type A, [Lu88], [KR02]

The polynomial ring Clzy, xa, ..., zx] = C[z] has an action by
CS}; by
we (@S = gD g T

write ¢ = z{" - - - 7" and wx® = 2™ for short.

The graded Hecke algebra of type A or the degenerate affine Hecke
algebra of type A Hy, is

Hk = (C[.%'] ® (CSk

with additional relations

C S;C
. x€ — g5
six® = %%, — ———.
Ti — Tiy1

This is equivalent to

SiTi = Tip18; — 1 and sixj = xjs; for j # 4,4+ 1.



Adjusting the tensor space - Type A, [DRV1, DRV2]

The graded Hecke algebra of type A is
H; = C[HT] (X)(CS']€/<(SZ.’L'Z =418 — 1, §iTj = TjS; for j #i,i+ 1>.
For A € P*, Hj, acts on

j=1,...,dim(L()\)),
LN®L@)®F = (C{Uj R vj, ® - Qj, | i = 17_..7T(+(1))

by
Si 1 U QUL = Vg © Vg,
as before, and

on
(MM@L@@“H@M@®<M®M4)



Adjusting the tensor space - Type B, [Na96], [DRV1],
[DRV2]

The degenerate affine Birman-Murakami-Wenzl| algebra
]B%k(e, 20y R1y Ry« -« ) is

H; = C[a;] X Bk(e, Z())
sivi =xiy18i — (L—e;))  (zi+xiv1)e; = ei(w + 2i41) = 0,
61113{62' = Ze1,

eixj = xje; for j # 4,1+ 1, sixj = xjs; for j # 4,1+ 1.



Adjusting the tensor space - Type B, [Na96], [DRV1],
[DRV2]

The degenerate affine Birman-Murakami-Wenzl| algebra
Bk(e, 20y R1y Ry« -« ) is

H; = C[x] X Bk(e, Z())
sivi =xiy18i — (L—e;))  (zi+xiv1)e; = ei(w + 2i41) = 0,
6’1531161' = Ze1,

eixj = xje; for j # 4,1+ 1, sixj = xjs; for j # 4,1+ 1.

By (e, 20, 21, 22, . . . ) acts on L(\) ® L(0)®* for appropriate choices
of €, 29, 21, ..., and centralizes the action of Ug for g = B,., C., or
D,.



