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Diagram algebras

A diagram algebra has vector space the linear span of (some class
of) diagrams on 2k vertices, which can be

1. graphs with certain conditions;

2. decorated graphs with certain conditions;

3. braids, sometimes with punctures;

4. tangles, sometimes with punctures; etc..

In any case, you arrange 2k vertices two rows, and establish
connections between them according to certain conditions:

1

1

2

2

3

3

4

4

k

k

The multiplication is given by concatenation, with rules for
resolving new artifacts arriving in the diagrams.
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Examples of diagram algebras

Our favorite examples encode endomorphisms of a tensor space
that commute with the action of another algebra.

Example 1: The symmetric group Sk as diagrams:
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These diagrams encode endomorphisms of L( )⊗k that commute
with the action of Usln, Ugln, CSLn, and CGLn.
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Examples of diagram algebras

Our favorite examples encode endomorphisms of a tensor space
that commute with the action of another algebra.

Example 1: The Temperley-Lieb algebra TLk(z), given by
non-crossing pairings:
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When z = 2, these diagrams encode endomorphisms of L( )⊗k

that commute with the action of Usl2, Ugl2, CSL2, and CGL2.
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Last time:
The Temperley-Lieb algebra TLk(z) is generated over C[z±1] by
e1, . . . , ek−1 with relations

e2i = zei, eiei±1ei = ei, eiej = ejei for |i− j| > 1.

Define the action of TLk(2) on L( )⊗k via the action of CSk by

i i+1

i i+1

· · · · · · = ei = 1− si = 2p
(i)
.

Then since TLk(2) = CSk/〈p
(i) | i = 1, . . . , k − 2〉, we have TLk

centralizes Usl2 in End(L( )⊗k).

For Usl2, L( ) = L(∅), so ei is really the projection into the trivial
component!
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Fundamental and dominant integral weights
Type Br, Cr, and Dr:

ωi = ε1+· · ·+εi for i = 1, . . . r−1 (for types Br, Cr) or r−2 (for type Dr)

and

P+ = {λ1ε1 + · · ·+ λrεr | λ1 ≥ λ2 ≥ · · · ≥ |λr| ≥ 0 and ∗}, where. . .

Type Br: ωr = 1
2 (ε1 + · · ·+ εr), so

∗ : λr ≥ 0 and λi ∈ Z for all i or λi ∈ Z +
1

2
for all i.

So P+ = { part’ns with no more than r parts, shifted by 0 or 1
2 }.

Type Cr: ωr = ε1 + · · ·+ εr, so

∗ : λr ≥ 0 and λi ∈ Z for all i.

So P+ = { part’ns with no more than r parts }.

Type Dr: ωr−1 = 1
2 (ε1 + · · ·+ εr−1 − εr) and ωr = 1

2 (ε1 + · · ·+ εr), so

∗ : λi ∈ Z for all i or λi ∈ Z +
1

2
for all i.

So P+ = { Br part’ns with last row marked with ± }.



In all cases Br, Cr, Dr, when λ isn’t too tall

L(λ)⊗ L( ) =
⊕
µ∈λ±

L(µ),

where
λ± = { “partitions” obtained from λ by adding or removing a box }.

So for r >> 0, L( )⊗ L( ) = L( )⊕ L( )⊕ L(∅).

Let
si : vji ⊗ vji+1 → vji+1 ⊗ vji and ei = np

(i)
∅ ,

where n = 2r + 1 (in type Br) or 2r (in types Cr or Dr).

Fix ε = ±1. The Brauer algebra Bk(ε, z) is generated over C = C[z±1]
by CSk = C〈s1, . . . , sk−1〉 and TLk(z) = C〈e1, . . . , ek−1〉, with
additional relations

eisi = siei = εei, eisj = sjei for |i− j| > 1,

eisi±1ei = εei, siei+1ei = si+1ei, and ei+1eisi+1 = ei+1si.

Bk(ε, z) centralizes Ug in End(L( )⊗k) when z = n, ε =

{
1 g = Br, Dr,

−1 g = Cr.
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Adjusting the tensor space
Let g have basis B = {b1, . . . , bd}, and dual basis B∗ = {b∗1, . . . , b∗d} with respect to 〈, 〉.

Recall the Casismir element, given by

κ =
∑
i

bib
∗
i ∈ Ug

is central and doesn’t depend on the choice of basis.

Similarly, we can
show that the split Casimir element

γ =
∑
i

bi ⊗ b∗i ∈ Ug⊗ Ug

is independent of choice of basis, and so
∑
i bi ⊗ b∗i =

∑
i b
∗
i ⊗ bi.

Namely,

∆(κ) =
∑
i

(bi ⊗ 1 + 1⊗ bi)(b∗i ⊗ 1 + 1⊗ b∗i ) = κ⊗ 1 + 1⊗ κ+ 2γ.
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Adjusting the tensor space
Let g have basis B = {b1, . . . , bd}, and dual basis B∗ = {b∗1, . . . , b∗d} with respect to 〈, 〉.

The split Casimir element is

γ =
∑
i

bi ⊗ b∗i =
∑
i

b∗i ⊗ bi,

so that

∆(κ) =
∑
i

(bi ⊗ 1 + 1⊗ bi)(b∗i ⊗ 1 + 1⊗ b∗i ) = κ⊗ 1 + 1⊗ κ+ 2γ.

Homework:

1. κ⊗ 1 and ∆(κ) have commuting actions on M ⊗N .

2. In type Ar, κ acts on the irreducible module L(λ) by the constant

〈λ, λ+ 2ρ〉 = 2
∑

box∈λ

c(box) + (r + 1)|λ|+ |λ|2

r + 1
,

where the content of a box in a partition λ is

c(box) = row(box)− col(box).

3. Calculate the action of ∆(κ)− κ⊗ 1 on the L(µ) in L(λ)⊗ L( ),
giving the answer in terms of the content of the box added.
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Adjusting the tensor space - Type Ar [Lu88], [KR02]
The polynomial ring C[x1, x2, . . . , xk] = C[x] has an action by
CSk by

w · (xc11 · · ·x
ck
k ) = x

cw−1(1)

1 · · ·x
cw−1(k)

k ;

write xc = xc11 · · ·x
ck
k and wxc = xwc for short.

The graded Hecke algebra of type A or the degenerate affine Hecke
algebra of type A Hk is

Hk = C[x]⊗ CSk

with additional relations

six
c = xsicsi −

xc − xsic

xi − xi+1
.

This is equivalent to

sixi = xi+1si − 1 and sixj = xjsi for j 6= i, i+ 1.



Adjusting the tensor space - Type Ar [Lu88], [KR02]
The polynomial ring C[x1, x2, . . . , xk] = C[x] has an action by
CSk by

w · (xc11 · · ·x
ck
k ) = x

cw−1(1)

1 · · ·x
cw−1(k)

k ;

write xc = xc11 · · ·x
ck
k and wxc = xwc for short.

The graded Hecke algebra of type A or the degenerate affine Hecke
algebra of type A Hk is

Hk = C[x]⊗ CSk

with additional relations

six
c = xsicsi −

xc − xsic

xi − xi+1
.

This is equivalent to

sixi = xi+1si − 1 and sixj = xjsi for j 6= i, i+ 1.



Adjusting the tensor space - Type Ar [Lu88], [KR02]
The polynomial ring C[x1, x2, . . . , xk] = C[x] has an action by
CSk by

w · (xc11 · · ·x
ck
k ) = x

cw−1(1)

1 · · ·x
cw−1(k)

k ;

write xc = xc11 · · ·x
ck
k and wxc = xwc for short.

The graded Hecke algebra of type A or the degenerate affine Hecke
algebra of type A Hk is

Hk = C[x]⊗ CSk

with additional relations

six
c = xsicsi −

xc − xsic

xi − xi+1
.

This is equivalent to

sixi = xi+1si − 1 and sixj = xjsi for j 6= i, i+ 1.



Adjusting the tensor space - Type Ar [DRV1, DRV2]

The graded Hecke algebra of type A is
Hk = C[x]⊗CSk/〈sixi = xi+1si− 1, sixj = xjsi for j 6= i, i+ 1〉.
For λ ∈ P+, Hk acts on

L(λ)⊗L( )⊗k = C
{
uj ⊗ vj1 ⊗ · · · ⊗ vjk |

j = 1, . . . ,dim(L(λ)),
ji = 1, . . . , r + 1

}
by

si : vji ⊗ vji+1 → vji+1 ⊗ vji ,

as before, and
xi = ∆(κ)⊗ 1− κ⊗ 1⊗ 1

on (
L(λ)⊗ L( )⊗i−1

)
⊗ L( )⊗

(
L( )⊗k−i

)
.



Adjusting the tensor space - Type Br [Na96], [DRV1],
[DRV2]

The degenerate affine Birman-Murakami-Wenzl algebra
Bk(ε, z0, z1, z2, . . . ) is

Hk = C[x]⊗Bk(ε, z0)

sixi = xi+1si − (1− ei) (xi + xi+1)ei = ei(xi + xi+1) = 0,

e1x
`
1ei = z`e1,

eixj = xjei for j 6= i, i+ 1, sixj = xjsi for j 6= i, i+ 1.

Bk(ε, z0, z1, z2, . . . ) acts on L(λ)⊗ L( )⊗k for appropriate choices
of ε, z0, z1, . . . , and centralizes the action of Ug for g = Br, Cr, or
Dr.
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