Math 128: Lecture 24

May 21, 2014

Diagram algebras

A diagram algebra has vector space the linear span of (some class of) diagrams on 2k vertices, which can be

- 1. graphs with certain conditions;
- 2. decorated graphs with certain conditions;
- 3. braids, sometimes with punctures;
- 4. tangles, sometimes with punctures; etc..

Diagram algebras

A diagram algebra has vector space the linear span of (some class of) diagrams on 2k vertices, which can be

- 1. graphs with certain conditions;
- 2. decorated graphs with certain conditions;
- 3. braids, sometimes with punctures;
- 4. tangles, sometimes with punctures; etc..

In any case, you arrange 2k vertices two rows, and establish connections between them according to certain conditions:

Diagram algebras

A diagram algebra has vector space the linear span of (some class of) diagrams on 2k vertices, which can be

- 1. graphs with certain conditions;
- 2. decorated graphs with certain conditions;
- 3. braids, sometimes with punctures;
- 4. tangles, sometimes with punctures; etc..

In any case, you arrange 2k vertices two rows, and establish connections between them according to certain conditions:

The multiplication is given by concatenation, with rules for resolving new artifacts arriving in the diagrams.

Our favorite examples encode endomorphisms of a tensor space that commute with the action of another algebra.

Our favorite examples encode endomorphisms of a tensor space that commute with the action of another algebra.

Our favorite examples encode endomorphisms of a tensor space that commute with the action of another algebra.

Our favorite examples encode endomorphisms of a tensor space that commute with the action of another algebra.

Our favorite examples encode endomorphisms of a tensor space that commute with the action of another algebra.

Example 1: The symmetric group S_k as diagrams:

These diagrams encode endomorphisms of $L(\Box)^{\otimes k}$ that commute with the action of $U\mathfrak{sl}_n$, $U\mathfrak{gl}_n$, \mathbb{CSL}_n , and \mathbb{CGL}_n .

Our favorite examples encode endomorphisms of a tensor space that commute with the action of another algebra.

Our favorite examples encode endomorphisms of a tensor space that commute with the action of another algebra.

Our favorite examples encode endomorphisms of a tensor space that commute with the action of another algebra.

Our favorite examples encode endomorphisms of a tensor space that commute with the action of another algebra.

Our favorite examples encode endomorphisms of a tensor space that commute with the action of another algebra.

Example 1: The Temperley-Lieb algebra $TL_k(z)$, given by non-crossing pairings:

When z = 2, these diagrams encode endomorphisms of $L(\Box)^{\otimes k}$ that commute with the action of $U\mathfrak{sl}_2$, $U\mathfrak{gl}_2$, \mathbb{CSL}_2 , and \mathbb{CGL}_2 .

Last time:

The Temperley-Lieb algebra $TL_k(z)$ is generated over $\mathbb{C}[z^{\pm 1}]$ by e_1, \ldots, e_{k-1} with relations

$$e_i^2 = ze_i, \quad e_i e_{i\pm 1} e_i = e_i, \quad e_i e_j = e_j e_i \text{ for } |i-j| > 1.$$

Last time:

The Temperley-Lieb algebra $TL_k(z)$ is generated over $\mathbb{C}[z^{\pm 1}]$ by e_1, \ldots, e_{k-1} with relations

$$e_i^2 = ze_i, \quad e_i e_{i\pm 1} e_i = e_i, \quad e_i e_j = e_j e_i \text{ for } |i-j| > 1.$$

Define the action of $TL_k(2)$ on $L(\Box)^{\otimes k}$ via the action of $\mathbb{C}S_k$ by

$$\left[\begin{array}{c} \cdots \end{array} \right] \left[\begin{array}{c} \overset{i}{\underset{i=i+1}{\overset{i+1$$

Then since $TL_k(2) = \mathbb{C}S_k/\langle p_{\exists}^{(i)} | i = 1, \dots, k-2 \rangle$, we have TL_k centralizes $U\mathfrak{sl}_2$ in $\operatorname{End}(L(\Box)^{\otimes k})$.

Last time:

The Temperley-Lieb algebra $TL_k(z)$ is generated over $\mathbb{C}[z^{\pm 1}]$ by e_1, \ldots, e_{k-1} with relations

$$e_i^2 = ze_i, \quad e_i e_{i\pm 1} e_i = e_i, \quad e_i e_j = e_j e_i \text{ for } |i-j| > 1.$$

Define the action of $TL_k(2)$ on $L(\Box)^{\otimes k}$ via the action of $\mathbb{C}S_k$ by

$$\left[\begin{array}{c} \cdots \end{array}\right] \underbrace{\left[\begin{array}{c} i \\ \vdots \\ i \end{array}\right]}_{i \quad i+1} \underbrace{\left[\begin{array}{c} \cdots \\ i \end{array}\right]}_{i \quad i+1} = e_i = 1 - s_i = 2p_{\text{H}}^{(i)}$$

Then since $TL_k(2) = \mathbb{C}S_k / \langle p_{\exists}^{(i)} | i = 1, \dots, k-2 \rangle$, we have TL_k centralizes $U\mathfrak{sl}_2$ in $\operatorname{End}(L(\Box)^{\otimes k})$.

For $U\mathfrak{sl}_2$, $L(\boxdot) = L(\emptyset)$, so e_i is really the projection into the trivial component!

Fundamental and dominant integral weights

Type B_r, C_r , and D_r : $\omega_i = \varepsilon_1 + \cdots + \varepsilon_i$ for $i = 1, \ldots r - 1$ (for types B_r, C_r) or r - 2 (for type D_r) and

$$P^{+} = \{\lambda_{1}\varepsilon_{1} + \dots + \lambda_{r}\varepsilon_{r} \mid \lambda_{1} \geq \lambda_{2} \geq \dots \geq |\lambda_{r}| \geq 0 \text{ and } *\}, \text{ where...}$$

Type B_{r} : $\omega_{r} = \frac{1}{2}(\varepsilon_{1} + \dots + \varepsilon_{r})$, so

$$*: \quad \lambda_r \geq 0 ext{ and } \lambda_i \in \mathbb{Z} ext{ for all } i ext{ or } \lambda_i \in \mathbb{Z} + rac{1}{2} ext{ for all } i.$$

-1

So $P^+ = \{ \text{ part'ns with no more than } r \text{ parts, shifted by } 0 \text{ or } \frac{1}{2} \}.$

Type C_r : $\omega_r = \varepsilon_1 + \cdots + \varepsilon_r$, so

*: $\lambda_r \ge 0$ and $\lambda_i \in \mathbb{Z}$ for all i.

So $P^+ = \{ \text{ part'ns with no more than } r \text{ parts } \}.$

Type
$$D_r$$
: $\omega_{r-1} = \frac{1}{2}(\varepsilon_1 + \dots + \varepsilon_{r-1} - \varepsilon_r)$ and $\omega_r = \frac{1}{2}(\varepsilon_1 + \dots + \varepsilon_r)$, so
*: $\lambda_i \in \mathbb{Z}$ for all i or $\lambda_i \in \mathbb{Z} + \frac{1}{2}$ for all i .
So $P^+ = \{ B_r \text{ part'ns with last row marked with } \pm \}$.

In all cases
$$B_r,C_r,D_r,$$
 when λ isn't too tall
$$L(\lambda)\otimes L(\Box)=\bigoplus_{\mu\in\lambda^\pm}L(\mu),$$

 $\lambda^{\pm} = \{$ "partitions" obtained from λ by adding or removing a box $\}$.

In all cases
$$B_r, C_r, D_r$$
, when λ isn't too tall $L(\lambda) \otimes L(\Box) = \bigoplus_{\mu \in \lambda^{\pm}} L(\mu),$

 $\lambda^{\pm} = \{$ "partitions" obtained from λ by adding or removing a box $\}$.

So for r >> 0, $L(\Box) \otimes L(\Box) = L(\Box\Box) \oplus L(\emptyset) \oplus L(\emptyset)$.

In all cases
$$B_r, C_r, D_r$$
, when λ isn't too tall $L(\lambda) \otimes L(\Box) = \bigoplus_{\mu \in \lambda^{\pm}} L(\mu),$

 $\lambda^{\pm} = \{$ "partitions" obtained from λ by adding or removing a box $\}$.

So for r >> 0, $L(\Box) \otimes L(\Box) = L(\Box) \oplus L(\emptyset) \oplus L(\emptyset)$.

Let

 $s_i: v_{j_i} \otimes v_{j_{i+1}} \to v_{j_{i+1}} \otimes v_{j_i}$ and $e_i = np_{\emptyset}^{(i)}$, where n = 2r + 1 (in type B_r) or 2r (in types C_r or D_r).

In all cases
$$B_r, C_r, D_r$$
, when λ isn't too tall $L(\lambda) \otimes L(\Box) = \bigoplus_{\mu \in \lambda^{\pm}} L(\mu),$

 $\lambda^{\pm} = \{$ "partitions" obtained from λ by adding or removing a box $\}$.

So for r >> 0, $L(\Box) \otimes L(\Box) = L(\Box) \oplus L(\emptyset) \oplus L(\emptyset)$.

Let

 $s_i: v_{j_i} \otimes v_{j_{i+1}} \to v_{j_{i+1}} \otimes v_{j_i}$ and $e_i = np_{\emptyset}^{(i)}$, where n = 2r + 1 (in type B_r) or 2r (in types C_r or D_r).

Fix $\epsilon = \pm 1$. The Brauer algebra $B_k(\epsilon, z)$ is generated over $C = \mathbb{C}[z^{\pm 1}]$ by $CS_k = C\langle s_1, \ldots, s_{k-1} \rangle$ and $TL_k(z) = C\langle e_1, \ldots, e_{k-1} \rangle$, with additional relations

$$e_i s_i = s_i e_i = \epsilon e_i, \quad e_i s_j = s_j e_i \text{ for } |i - j| > 1,$$

 $e_i s_{i\pm 1} e_i = \epsilon e_i, \quad s_i e_{i+1} e_i = s_{i+1} e_i, \quad \text{and} \quad e_{i+1} e_i s_{i+1} = e_{i+1} s_i.$

In all cases
$$B_r, C_r, D_r$$
, when λ isn't too tall $L(\lambda) \otimes L(\Box) = \bigoplus_{\mu \in \lambda^{\pm}} L(\mu),$

 $\lambda^{\pm} = \{$ "partitions" obtained from λ by adding or removing a box $\}$.

So for r >> 0, $L(\Box) \otimes L(\Box) = L(\Box) \oplus L(\emptyset) \oplus L(\emptyset)$.

Let

 $s_i: v_{j_i} \otimes v_{j_{i+1}} \to v_{j_{i+1}} \otimes v_{j_i}$ and $e_i = np_{\emptyset}^{(i)}$, where n = 2r + 1 (in type B_r) or 2r (in types C_r or D_r).

Fix $\epsilon = \pm 1$. The Brauer algebra $B_k(\epsilon, z)$ is generated over $C = \mathbb{C}[z^{\pm 1}]$ by $CS_k = C\langle s_1, \ldots, s_{k-1} \rangle$ and $TL_k(z) = C\langle e_1, \ldots, e_{k-1} \rangle$, with additional relations

$$e_i s_i = s_i e_i = \epsilon e_i, \quad e_i s_j = s_j e_i \text{ for } |i - j| > 1,$$

 $e_i s_{i \pm 1} e_i = \epsilon e_i, \quad s_i e_{i+1} e_i = s_{i+1} e_i, \quad \text{and} \quad e_{i+1} e_i s_{i+1} = e_{i+1} s_i.$

 $B_k(\epsilon,z) \text{ centralizes } U\mathfrak{g} \text{ in } \operatorname{End}(L(\Box)^{\otimes k}) \text{ when } z=n, \ \epsilon = \begin{cases} 1 & \mathfrak{g}=B_r, D_r, \\ -1 & \mathfrak{g}=C_r. \end{cases}$

Let \mathfrak{g} have basis $\mathcal{B} = \{b_1, \dots, b_d\}$, and dual basis $\mathcal{B}^* = \{b_1^*, \dots, b_d^*\}$ with respect to \langle, \rangle .

Recall the Casismir element, given by

$$\kappa = \sum_i b_i b_i^* \in U\mathfrak{g}$$

is central and doesn't depend on the choice of basis.

Let \mathfrak{g} have basis $\mathcal{B} = \{b_1, \ldots, b_d\}$, and dual basis $\mathcal{B}^* = \{b_1^*, \ldots, b_d^*\}$ with respect to \langle, \rangle .

Recall the Casismir element, given by

$$\kappa = \sum_i b_i b_i^* \in U\mathfrak{g}$$

is central and doesn't depend on the choice of basis. Similarly, we can show that the split Casimir element

$$\gamma = \sum_i b_i \otimes b_i^* \in U\mathfrak{g} \otimes U\mathfrak{g}$$

is independent of choice of basis, and so $\sum_i b_i \otimes b_i^* = \sum_i b_i^* \otimes b_i$.

Let \mathfrak{g} have basis $\mathcal{B} = \{b_1, \ldots, b_d\}$, and dual basis $\mathcal{B}^* = \{b_1^*, \ldots, b_d^*\}$ with respect to \langle, \rangle .

Recall the Casismir element, given by

$$\kappa = \sum_i b_i b_i^* \in U\mathfrak{g}$$

is central and doesn't depend on the choice of basis. Similarly, we can show that the split Casimir element

$$\gamma = \sum_i b_i \otimes b_i^* \in U\mathfrak{g} \otimes U\mathfrak{g}$$

is independent of choice of basis, and so $\sum_i b_i \otimes b_i^* = \sum_i b_i^* \otimes b_i.$ Namely,

$$\Delta(\kappa) = \sum_{i} (b_i \otimes 1 + 1 \otimes b_i) (b_i^* \otimes 1 + 1 \otimes b_i^*) = \kappa \otimes 1 + 1 \otimes \kappa + 2\gamma.$$

Let g have basis $\mathcal{B} = \{b_1, \dots, b_d\}$, and dual basis $\mathcal{B}^* = \{b_1^*, \dots, b_d^*\}$ with respect to \langle, \rangle . The split Casimir element is

$$\gamma = \sum_{i} b_i \otimes b_i^* = \sum_{i} b_i^* \otimes b_i,$$

so that

$$\Delta(\kappa) = \sum_{i} (b_i \otimes 1 + 1 \otimes b_i) (b_i^* \otimes 1 + 1 \otimes b_i^*) = \kappa \otimes 1 + 1 \otimes \kappa + 2\gamma.$$

Let g have basis $\mathcal{B} = \{b_1, \dots, b_d\}$, and dual basis $\mathcal{B}^* = \{b_1^*, \dots, b_d^*\}$ with respect to \langle, \rangle . The split Casimir element is

$$\gamma = \sum_{i} b_i \otimes b_i^* = \sum_{i} b_i^* \otimes b_i,$$

so that

$$\Delta(\kappa) = \sum_{i} (b_i \otimes 1 + 1 \otimes b_i) (b_i^* \otimes 1 + 1 \otimes b_i^*) = \kappa \otimes 1 + 1 \otimes \kappa + 2\gamma.$$

Homework:

- 1. $\kappa \otimes 1$ and $\Delta(\kappa)$ have commuting actions on $M \otimes N$.
- 2. In type A_r , κ acts on the irreducible module $L(\lambda)$ by the constant

$$\langle \lambda, \lambda + 2\rho \rangle = 2 \sum_{\text{box} \in \lambda} c(\text{box}) + (r+1)|\lambda| + \frac{|\lambda|^2}{r+1},$$

where the content of a box in a partition λ is

$$c(box) = row(box) - col(box).$$

3. Calculate the action of $\Delta(\kappa) - \kappa \otimes 1$ on the $L(\mu)$ in $L(\lambda) \otimes L(\Box)$, giving the answer in terms of the content of the box added.

Adjusting the tensor space - Type A_r [Lu88], [KR02]

The polynomial ring $\mathbb{C}[x_1,x_2,\ldots,x_k]=\mathbb{C}[x]$ has an action by $\mathbb{C}S_k$ by

$$w \cdot (x_1^{c_1} \cdots x_k^{c_k}) = x_1^{c_{w^{-1}(1)}} \cdots x_k^{c_{w^{-1}(k)}};$$

write $x^{\mathbf{c}} = x_1^{c_1} \cdots x_k^{c_k}$ and $wx^{\mathbf{c}} = x^{w\mathbf{c}}$ for short.

Adjusting the tensor space - Type A_r [Lu88], [KR02]

The polynomial ring $\mathbb{C}[x_1,x_2,\ldots,x_k]=\mathbb{C}[x]$ has an action by $\mathbb{C}S_k$ by

$$w \cdot (x_1^{c_1} \cdots x_k^{c_k}) = x_1^{c_{w^{-1}(1)}} \cdots x_k^{c_{w^{-1}(k)}};$$

write $x^{\mathbf{c}} = x_1^{c_1} \cdots x_k^{c_k}$ and $wx^{\mathbf{c}} = x^{w\mathbf{c}}$ for short.

The graded Hecke algebra of type A or the degenerate affine Hecke algebra of type A \mathbb{H}_k is

$$\mathbb{H}_k = \mathbb{C}[x] \otimes \mathbb{C}S_k$$

with additional relations

$$s_i x^{\mathbf{c}} = x^{s_i \mathbf{c}} s_i - \frac{x^{\mathbf{c}} - x^{s_i \mathbf{c}}}{x_i - x_{i+1}}.$$

Adjusting the tensor space - Type A_r [Lu88], [KR02]

The polynomial ring $\mathbb{C}[x_1, x_2, \dots, x_k] = \mathbb{C}[x]$ has an action by $\mathbb{C}S_k$ by

$$w \cdot (x_1^{c_1} \cdots x_k^{c_k}) = x_1^{c_{w^{-1}(1)}} \cdots x_k^{c_{w^{-1}(k)}};$$

write $x^{\mathbf{c}} = x_1^{c_1} \cdots x_k^{c_k}$ and $wx^{\mathbf{c}} = x^{w\mathbf{c}}$ for short.

The graded Hecke algebra of type A or the degenerate affine Hecke algebra of type A \mathbb{H}_k is

$$\mathbb{H}_k = \mathbb{C}[x] \otimes \mathbb{C}S_k$$

with additional relations

$$s_i x^{\mathbf{c}} = x^{s_i \mathbf{c}} s_i - \frac{x^{\mathbf{c}} - x^{s_i \mathbf{c}}}{x_i - x_{i+1}}.$$

This is equivalent to

$$s_i x_i = x_{i+1} s_i - 1$$
 and $s_i x_j = x_j s_i$ for $j \neq i, i+1$.

Adjusting the tensor space - Type A_r [DRV1, DRV2]

The graded Hecke algebra of type A is $\mathbb{H}_k = \mathbb{C}[x] \otimes \mathbb{C}S_k / \langle s_i x_i = x_{i+1}s_i - 1, s_i x_j = x_j s_i \text{ for } j \neq i, i+1 \rangle.$ For $\lambda \in P^+$, \mathbb{H}_k acts on

$$L(\lambda) \otimes L(\Box)^{\otimes k} = \mathbb{C} \left\{ u_j \otimes v_{j_1} \otimes \cdots \otimes v_{j_k} \mid \begin{array}{c} j = 1, \dots, \dim(L(\lambda)), \\ j_i = 1, \dots, r+1 \end{array} \right\}$$

by

$$s_i: v_{j_i} \otimes v_{j_{i+1}} \to v_{j_{i+1}} \otimes v_{j_i},$$

as before, and

$$x_i = \Delta(\kappa) \otimes 1 - \kappa \otimes 1 \otimes 1$$

on

$$\left(L(\lambda)\otimes L(\mathbf{u})^{\otimes i-1}\right)\otimes L(\mathbf{u})\otimes \left(L(\mathbf{u})^{\otimes k-i}\right).$$

Adjusting the tensor space - Type B_r [Na96], [DRV1], [DRV2]

The degenerate affine Birman-Murakami-Wenzl algebra $\mathbb{B}_k(\epsilon, z_0, z_1, z_2, \dots)$ is

$$\mathbb{H}_k = \mathbb{C}[x] \otimes B_k(\epsilon, z_0)$$

$$\begin{aligned} s_i x_i &= x_{i+1} s_i - (1 - e_i) & (x_i + x_{i+1}) e_i = e_i (x_i + x_{i+1}) = 0, \\ e_1 x_1^{\ell} e_i &= z_{\ell} e_1, \\ e_i x_j &= x_j e_i \text{ for } j \neq i, i+1, \qquad s_i x_j = x_j s_i \text{ for } j \neq i, i+1. \end{aligned}$$

Adjusting the tensor space - Type B_r [Na96], [DRV1], [DRV2]

The degenerate affine Birman-Murakami-Wenzl algebra $\mathbb{B}_k(\epsilon, z_0, z_1, z_2, \dots)$ is

$$\mathbb{H}_k = \mathbb{C}[x] \otimes B_k(\epsilon, z_0)$$

$$\begin{split} s_i x_i &= x_{i+1} s_i - (1-e_i) \qquad (x_i + x_{i+1}) e_i = e_i (x_i + x_{i+1}) = 0, \\ e_1 x_1^{\ell} e_i &= z_{\ell} e_1, \\ e_i x_j &= x_j e_i \text{ for } j \neq i, i+1, \qquad s_i x_j = x_j s_i \text{ for } j \neq i, i+1. \end{split}$$

 $\mathbb{B}_k(\epsilon, z_0, z_1, z_2, \dots)$ acts on $L(\lambda) \otimes L(\Box)^{\otimes k}$ for appropriate choices of $\epsilon, z_0, z_1, \dots$, and centralizes the action of $U\mathfrak{g}$ for $\mathfrak{g} = B_r$, C_r , or D_r .