Math 128: Lecture 23

May 19, 2014

More on Centralizers

The double centralizer theorem says that for a vector space M, $A \subseteq \operatorname{End}(M)$ semisimple, and $B=\operatorname{End}_{A}(M)$, we have

1. B is semisimple;
2. $A=\operatorname{End}_{B}(M)$; and
3. as an a, b bimodule, $M=\bigoplus_{\lambda \in \widehat{M}} A^{\lambda} \otimes B^{\lambda}$.

More on Centralizers

The double centralizer theorem says that for a vector space M, $A \subseteq \operatorname{End}(M)$ semisimple, and $B=\operatorname{End}_{A}(M)$, we have

1. B is semisimple;
2. $A=\operatorname{End}_{B}(M)$; and
3. as an a, b bimodule, $M=\bigoplus_{\lambda \in \widehat{M}} A^{\lambda} \otimes B^{\lambda}$.

Note that $Z(A) \subseteq \operatorname{End}_{A}(B) \quad$ and $Z(B) \subseteq \operatorname{End}_{B}(A)$.

More on Centralizers

The double centralizer theorem says that for a vector space M, $A \subseteq \operatorname{End}(M)$ semisimple, and $B=\operatorname{End}_{A}(M)$, we have

1. B is semisimple;
2. $A=\operatorname{End}_{B}(M)$; and
3. as an a, b bimodule, $M=\bigoplus_{\lambda \in \widehat{M}} A^{\lambda} \otimes B^{\lambda}$.

Note that $Z(A) \subseteq \operatorname{End}_{A}(B) \quad$ and $Z(B) \subseteq \operatorname{End}_{B}(A)$. Actually,
$Z(A)=\operatorname{End}_{A}(M) \cap A=\operatorname{End}_{A}(M) \cap \operatorname{End}_{B}(M)=B \cap \operatorname{End}_{B}(M)=Z(B)$.
So the centers of both algebras are generated by the same centrally primitive idempotents, which were the elements of $Z(A)$ satisfying

$$
p_{\lambda}^{2}=p_{\lambda}, \quad p_{\lambda} p_{\mu}=p_{\mu} p_{\lambda}=0 \text { for } \lambda \neq 0, \quad \text { and } \quad \sum_{\lambda \in \widehat{A}} p_{\lambda}=1
$$

so that

$$
Z(A)=\mathbb{C}\left\{p_{\lambda} \mid \lambda \in \widehat{A}\right\} \quad \text { and } \quad p_{\lambda} M=M^{(\lambda)} .
$$

Computing idempotents [GP, §7]

Let A be f.d. s.s. algebra $\mathrm{w} /$ simple modules indexed by \widehat{A}.

Suppose that the trace form $\langle a, b\rangle=\operatorname{tr}(a b)$ on the regular representation is nondegenerate.

Computing idempotents [GP, §7]

Let A be f.d. s.s. algebra $\mathrm{w} /$ simple modules indexed by \widehat{A}.

Suppose that the trace form $\langle a, b\rangle=\operatorname{tr}(a b)$ on the regular representation is nondegenerate. Let \mathcal{B} be a basis of A, and $\mathcal{B}^{*}=\left\{b^{*} \mid b \in \mathcal{B}\right\}$ the dual basis with respect to the trace form.

Computing idempotents [GP, §7]

Let A be f.d. s.s. algebra $\mathrm{w} /$ simple modules indexed by \widehat{A}.

Suppose that the trace form $\langle a, b\rangle=\operatorname{tr}(a b)$ on the regular representation is nondegenerate. Let \mathcal{B} be a basis of A, and $\mathcal{B}^{*}=\left\{b^{*} \mid b \in \mathcal{B}\right\}$ the dual basis with respect to the trace form. Let χ^{λ} be the map

$$
\chi^{\lambda}: A^{\lambda} \rightarrow \mathbb{C} \quad \text { defined by } \quad a \mapsto \operatorname{tr}_{A^{\lambda}}(a) .
$$

Computing idempotents [GP, §7]

Let A be f.d. s.s. algebra $\mathrm{w} /$ simple modules indexed by \widehat{A}.

Suppose that the trace form $\langle a, b\rangle=\operatorname{tr}(a b)$ on the regular representation is nondegenerate. Let \mathcal{B} be a basis of A, and $\mathcal{B}^{*}=\left\{b^{*} \mid b \in \mathcal{B}\right\}$ the dual basis with respect to the trace form. Let χ^{λ} be the map

$$
\chi^{\lambda}: A^{\lambda} \rightarrow \mathbb{C} \quad \text { defined by } \quad a \mapsto \operatorname{tr}_{A^{\lambda}}(a) .
$$

Let

$$
c_{\lambda}=\frac{1}{\operatorname{dim}\left(A^{\lambda}\right)} \sum_{b \in \mathcal{B}} \chi^{\lambda}(b) \chi^{\lambda}\left(b^{*}\right) .
$$

Computing idempotents [GP, §7]

Let A be f.d. s.s. algebra $\mathrm{w} /$ simple modules indexed by \widehat{A}.

Suppose that the trace form $\langle a, b\rangle=\operatorname{tr}(a b)$ on the regular representation is nondegenerate. Let \mathcal{B} be a basis of A, and $\mathcal{B}^{*}=\left\{b^{*} \mid b \in \mathcal{B}\right\}$ the dual basis with respect to the trace form. Let χ^{λ} be the map

$$
\chi^{\lambda}: A^{\lambda} \rightarrow \mathbb{C} \quad \text { defined by } \quad a \mapsto \operatorname{tr}_{A^{\lambda}}(a) .
$$

Let

$$
c_{\lambda}=\frac{1}{\operatorname{dim}\left(A^{\lambda}\right)} \sum_{b \in \mathcal{B}} \chi^{\lambda}(b) \chi^{\lambda}\left(b^{*}\right)
$$

Then

$$
p_{\lambda}=\frac{1}{c_{\lambda}} \sum_{b \in \mathcal{B}} \chi^{\lambda}\left(b^{*}\right) b .
$$

The Temperley-Lieb algebra $T L_{k}(x)$ is generated over \mathbb{C} by e_{1}, \ldots, e_{k-1} with relations

$$
e_{i}^{2}=x e_{i}, \quad e_{i} e_{i \pm 1} e_{i}=e_{i}, \quad e_{i} e_{j}=e_{j} e_{i} \text { for }|i-j|>1 .
$$

The Temperley-Lieb algebra $T L_{k}(x)$ is generated over \mathbb{C} by e_{1}, \ldots, e_{k-1} with relations

$$
e_{i}^{2}=x e_{i}, \quad e_{i} e_{i \pm 1} e_{i}=e_{i}, \quad e_{i} e_{j}=e_{j} e_{i} \text { for }|i-j|>1 .
$$

$T L_{k}$ generically centralizes $U \operatorname{sl}_{2}$ in $\operatorname{End}\left(L(\square)^{\otimes k}\right)$ when $x=2$.

The Temperley-Lieb algebra $T L_{k}(x)$ is generated over \mathbb{C} by e_{1}, \ldots, e_{k-1} with relations

$$
e_{i}^{2}=x e_{i}, \quad e_{i} e_{i \pm 1} e_{i}=e_{i}, \quad e_{i} e_{j}=e_{j} e_{i} \text { for }|i-j|>1
$$

$T L_{k}$ generically centralizes $U \operatorname{sl}_{2}$ in $\operatorname{End}\left(L(\square)^{\otimes k}\right)$ when $x=2$.
The Brauer algebra $B_{k}(x)$ is generated over \mathbb{C} by $\mathbb{C} S_{k}=\mathbb{C}\left\langle s_{1}, \ldots, s_{k-1}\right\rangle$ and $T L_{k}(x)=\mathbb{C}\left\langle e_{1}, \ldots, e_{k-1}\right\rangle$, with additional relations

$$
\begin{gathered}
e_{i} s_{i}=s_{i} e_{i}=e_{i}, \quad e_{i} s_{j}=s_{j} e_{i} \text { for }|i-j|>1 \\
s_{i} e_{i+1} e_{i}=s_{i+1} e_{i}, \quad \text { and } \quad e_{i+1} e_{i} e_{i+1}=e_{i+1} s_{i}
\end{gathered}
$$

$B_{k}(x)$ generically centralizes $U \mathfrak{s l}_{n}$ in $\operatorname{End}\left(L(\square)^{\otimes k}\right)$ when $x=n$.

