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More on Centralizers
The double centralizer theorem says that for a vector space M ,
A ⊆ End(M) semisimple, and B = EndA(M), we have

1. B is semisimple;

2. A = EndB(M); and

3. as an a, b bimodule, M =
⊕
λ∈M̂

Aλ ⊗Bλ.

Note that Z(A) ⊆ EndA(B) and Z(B) ⊆ EndB(A).
Actually,

Z(A) = EndA(M)∩A = EndA(M)∩EndB(M) = B∩EndB(M) = Z(B).

So the centers of both algebras are generated by the same centrally
primitive idempotents, which were the elements of Z(A) satisfying

p2λ = pλ, pλpµ = pµpλ = 0 for λ 6= 0, and
∑
λ∈Â

pλ = 1,

so that
Z(A) = C{pλ | λ ∈ Â} and pλM =M (λ).
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pλ = 1,

so that
Z(A) = C{pλ | λ ∈ Â} and pλM =M (λ).
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Computing idempotents [GP, §7]
Let A be f.d. s.s. algebra w/ simple modules indexed by Â.

Suppose that the trace form 〈a, b〉 = tr(ab) on the regular
representation is nondegenerate.

Let B be a basis of A, and
B∗ = {b∗ | b ∈ B} the dual basis with respect to the trace form.
Let χλ be the map

χλ : Aλ → C defined by a 7→ trAλ(a).

Let

cλ =
1

dim(Aλ)

∑
b∈B

χλ(b)χλ(b∗).

Then

pλ =
1

cλ

∑
b∈B

χλ(b∗)b.
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The Temperley-Lieb algebra TLk(x) is generated over C by
e1, . . . , ek−1 with relations

e2i = xei, eiei±1ei = ei, eiej = ejei for |i− j| > 1.

TLk generically centralizes Usl2 in End(L( )⊗k) when x = 2.

The Brauer algebra Bk(x) is generated over C by
CSk = C〈s1, . . . , sk−1〉 and TLk(x) = C〈e1, . . . , ek−1〉, with
additional relations

eisi = siei = ei, eisj = sjei for |i− j| > 1,

siei+1ei = si+1ei, and ei+1eiei+1 = ei+1si.

Bk(x) generically centralizes Usln in End(L( )⊗k) when x = n.
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