Math 128: Lecture 22

May 16, 2014

Last time: Decomposing modules

Let M be an A-module, and $\operatorname{Hom}\left(A^{\lambda}, M\right)$ be the set of A-module homomorphisms $\phi: A^{\lambda} \rightarrow M$.

Last time: Decomposing modules

Let M be an A-module, and $\operatorname{Hom}\left(A^{\lambda}, M\right)$ be the set of A-module homomorphisms $\phi: A^{\lambda} \rightarrow M$.

For an A module M, the isotypic component of M corresponding to λ is

$$
M^{(\lambda)}=\sum_{\substack{U \subseteq M \\ U \cong A^{\lambda}}} U .
$$

Last time: Decomposing modules

Let M be an A-module, and $\operatorname{Hom}\left(A^{\lambda}, M\right)$ be the set of A-module homomorphisms $\phi: A^{\lambda} \rightarrow M$.

For an A module M, the isotypic component of M corresponding to λ is

$$
M^{(\lambda)}=\sum_{\substack{U \subseteq M \\ U \cong A^{\lambda}}} U
$$

The canonical map

$$
\operatorname{Hom}\left(A^{\lambda}, M\right) \otimes A^{\lambda} \rightarrow M \quad \text { defined by } \quad \phi \otimes u \mapsto \phi(u)
$$ produces an isomorphism

$$
\operatorname{Hom}\left(A^{\lambda}, M\right) \otimes A^{\lambda} \cong M^{(\lambda)} .
$$

So, for one, $m_{M}(\lambda)=\operatorname{dim}\left(\operatorname{Hom}\left(A^{\lambda}, M\right)\right)$.

Last time: Centralizers

Define the centralizer of A (in $\operatorname{End}(M)$) to be
$\operatorname{End}_{A}(M)=\{\phi \in \operatorname{End}(M) \mid a \phi(m)=\phi(a \cdot m)$ for all $a \in A, m \in M\}$,
i.e. $\operatorname{End}_{A}(M)$ is the set of all endomorphisms of M which commute with the action of A.

Last time: Centralizers

Define the centralizer of A (in $\operatorname{End}(M)$) to be
$\operatorname{End}_{A}(M)=\{\phi \in \operatorname{End}(M) \mid a \phi(m)=\phi(a \cdot m)$ for all $a \in A, m \in M\}$,
i.e. $\operatorname{End}_{A}(M)$ is the set of all endomorphisms of M which commute with the action of A.

Let $B=\operatorname{End}_{A}(M) . M$ is not only a module for A and B individually, but since their actions commute, it's an A, B bimodule, i.e. a module for $A \otimes B$.

Last time: Centralizers

Define the centralizer of A (in $\operatorname{End}(M)$) to be
$\operatorname{End}_{A}(M)=\{\phi \in \operatorname{End}(M) \mid a \phi(m)=\phi(a \cdot m)$ for all $a \in A, m \in M\}$,
i.e. $\operatorname{End}_{A}(M)$ is the set of all endomorphisms of M which commute with the action of A.

Let $B=\operatorname{End}_{A}(M) . M$ is not only a module for A and B individually, but since their actions commute, it's an A, B bimodule, i.e. a module for $A \otimes B$. (Relations like

$$
\begin{aligned}
(a \otimes b) \cdot\left(a^{\prime} \otimes b^{\prime}\right) \cdot m & =a \cdot b \cdot a^{\prime} \cdot b^{\prime} \cdot m \\
& =a \cdot a^{\prime} \cdot b \cdot b^{\prime} \cdot m=\left(a a^{\prime} \otimes b b^{\prime}\right) \cdot m
\end{aligned}
$$

check out.)

Last time: Centralizers

Define the centralizer of A (in $\operatorname{End}(M)$) to be
$\operatorname{End}_{A}(M)=\{\phi \in \operatorname{End}(M) \mid a \phi(m)=\phi(a \cdot m)$ for all $a \in A, m \in M\}$,
i.e. $\operatorname{End}_{A}(M)$ is the set of all endomorphisms of M which commute with the action of A.

Let $B=\operatorname{End}_{A}(M) . M$ is not only a module for A and B individually, but since their actions commute, it's an A, B bimodule, i.e. a module for $A \otimes B$. (Relations like

$$
\begin{aligned}
(a \otimes b) \cdot\left(a^{\prime} \otimes b^{\prime}\right) \cdot m & =a \cdot b \cdot a^{\prime} \cdot b^{\prime} \cdot m \\
& =a \cdot a^{\prime} \cdot b \cdot b^{\prime} \cdot m=\left(a a^{\prime} \otimes b b^{\prime}\right) \cdot m
\end{aligned}
$$

check out.)
Question: How does M decompose as an A, B bimodule?

Centralizers

There is a natural action of $\operatorname{End}_{A}(M)$ on $\operatorname{Hom}\left(A^{\lambda}, M\right)$ by

$$
b \cdot \phi: v \mapsto b \cdot \phi(v)
$$

for all $b \in B, \phi \in \operatorname{Hom}\left(A^{\lambda}, M\right)$, and $v \in A^{\lambda}$.
(Check: (1) Well defined, and (2) sends A-mod homs to A-mod homs.)

Centralizers

There is a natural action of $\operatorname{End}_{A}(M)$ on $\operatorname{Hom}\left(A^{\lambda}, M\right)$ by

$$
b \cdot \phi: v \mapsto b \cdot \phi(v)
$$

for all $b \in B, \phi \in \operatorname{Hom}\left(A^{\lambda}, M\right)$, and $v \in A^{\lambda}$.
(Check: (1) Well defined, and (2) sends A-mod homs to A-mod homs.)

Theorem (Double centralizer theorem)
Let M be a vector space, and $A \subseteq \operatorname{End}(M)$. Then the algebra $B=\operatorname{End}_{A}(M)$ is semisimple, one has $\operatorname{End}_{B}(M)=A$, and M has the multiplicity-free complete decomposition

$$
M \cong \bigoplus_{\widehat{M}} A^{\lambda} \otimes B^{\lambda}
$$

as an (A, B)-bimodule, where $\left\{B^{\lambda} \mid \lambda \in \widehat{M}\right\}$ are distinct simple B-modules.

Example: The symmetric group and $\mathfrak{s l}_{n}$

The symmetric group S_{k} (permutations) as diagrams:

Example: The symmetric group and $\mathfrak{s l}_{n}$

The symmetric group S_{k} (permutations) as diagrams:

(with multiplication given by concatenation)

Example: The symmetric group and $\mathfrak{s l}_{n}$

The symmetric group S_{k} (permutations) as diagrams:

(with multiplication given by concatenation)

Example: The symmetric group and $\mathfrak{s l}_{n}$

The symmetric group S_{k} (permutations) as diagrams:

(with multiplication given by concatenation)

Example: The symmetric group and $\mathfrak{s l}_{n}$

Let $A=U \mathfrak{s l}_{n}$ and let $V=L\left(\omega_{1}\right)=\mathbb{C}\left\{v_{1}, \ldots, v_{n}\right\}$. Fix $k \leq n$.

Example: The symmetric group and $\mathfrak{s l}_{n}$

Let $A=U \operatorname{sl}_{n}$ and let $V=L\left(\omega_{1}\right)=\mathbb{C}\left\{v_{1}, \ldots, v_{n}\right\}$. Fix $k \leq n$. $U \mathfrak{s l}_{n}$ is a Hopf algebra, so it acts on $V^{\otimes k}$:

$$
x \cdot\left(v_{i_{1}} \otimes \cdots \otimes v_{i_{k}}\right)=\sum_{j=1}^{k} v_{i_{1}} \otimes \cdots \otimes x v_{2} \otimes \cdots \otimes v_{i_{k}}
$$

Example: The symmetric group and $\mathfrak{s l}_{n}$

Let $A=U \mathfrak{s l}_{n}$ and let $V=L\left(\omega_{1}\right)=\mathbb{C}\left\{v_{1}, \ldots, v_{n}\right\}$. Fix $k \leq n$. $U \mathfrak{s l}_{n}$ is a Hopf algebra, so it acts on $V^{\otimes k}$:

$$
x \cdot\left(v_{i_{1}} \otimes \cdots \otimes v_{i_{k}}\right)=\sum_{j=1}^{k} v_{i_{1}} \otimes \cdots \otimes x v_{2} \otimes \cdots \otimes v_{i_{k}} .
$$

S_{k} also acts on $V^{\otimes k}$ by place permutation:

$$
\sigma \cdot\left(v_{i_{1}} \otimes \cdots \otimes v_{i_{k}}\right)=v_{\sigma^{-1}\left(i_{1}\right)} \otimes \cdots \otimes v_{\sigma^{-1}\left(i_{k}\right)}
$$

Example: The symmetric group and $\mathfrak{s l}_{n}$

Let $A=U \mathfrak{s l}_{n}$ and let $V=L\left(\omega_{1}\right)=\mathbb{C}\left\{v_{1}, \ldots, v_{n}\right\}$. Fix $k \leq n$. $U \mathfrak{s l}_{n}$ is a Hopf algebra, so it acts on $V^{\otimes k}$:

$$
x \cdot\left(v_{i_{1}} \otimes \cdots \otimes v_{i_{k}}\right)=\sum_{j=1}^{k} v_{i_{1}} \otimes \cdots \otimes x v_{2} \otimes \cdots \otimes v_{i_{k}} .
$$

S_{k} also acts on $V^{\otimes k}$ by place permutation:

$$
\sigma \cdot\left(v_{i_{1}} \otimes \cdots \otimes v_{i_{k}}\right)=v_{\sigma^{-1}\left(i_{1}\right)} \otimes \cdots \otimes v_{\sigma^{-1}\left(i_{k}\right)}
$$

These actions commute!

Schur-Weyl Duality

Let A be one of
the group algebra $\mathbb{C G L}_{n}(\mathbb{C})$
the group algebra $\mathbb{C S L}_{n}(\mathbb{C})$
the enveloping algebra $U \mathfrak{g l}_{n}(\mathbb{C})$ the enveloping algebra $U \mathfrak{s l}_{n}(\mathbb{C})$
where $\mathrm{GL}_{n}(\mathbb{C})=\left\{g \in M_{n}(\mathbb{C}) \mid \operatorname{det}(g) \neq 0\right\}$, where $\mathrm{SL}_{n}(\mathbb{C})=\left\{g \in M_{n}(\mathbb{C}) \mid \operatorname{det}(g)=1\right\}$, where $\mathfrak{g l}_{n}(\mathbb{C})=\left\{x \in M_{n}(\mathbb{C})\right\}$, or where $\mathfrak{s l}_{n}(\mathbb{C})=\left\{x \in M_{n}(\mathbb{C}) \mid \operatorname{tr}(x)=0\right\}$, with standard representation $V=\mathbb{C}^{n}$. Let $B=\mathbb{C} S_{k}$.

Schur-Weyl Duality

Let A be one of
the group algebra $\mathbb{C G L}_{n}(\mathbb{C})$
the group algebra $\mathbb{C S L}_{n}(\mathbb{C})$ the enveloping algebra $U \mathfrak{g l}_{n}(\mathbb{C})$ the enveloping algebra $U \mathfrak{s l}_{n}(\mathbb{C})$
where $\mathrm{GL}_{n}(\mathbb{C})=\left\{g \in M_{n}(\mathbb{C}) \mid \operatorname{det}(g) \neq 0\right\}$,
where $\mathrm{SL}_{n}(\mathbb{C})=\left\{g \in M_{n}(\mathbb{C}) \mid \operatorname{det}(g)=1\right\}$, where $\mathfrak{g l}_{n}(\mathbb{C})=\left\{x \in M_{n}(\mathbb{C})\right\}$, or where $\mathfrak{s l}_{n}(\mathbb{C})=\left\{x \in M_{n}(\mathbb{C}) \mid \operatorname{tr}(x)=0\right\}$, with standard representation $V=\mathbb{C}^{n}$. Let $B=\mathbb{C} S_{k}$.
Schur (1901): A and B have commuting actions on $V^{\otimes k}$ with

$$
\operatorname{End}_{A}\left(V^{\otimes k}\right)=\underbrace{\pi(B)}_{\substack{(\mathrm{img} \text { of } \\ B \text {-action) }}} \text { and } \operatorname{End}_{B}\left(V^{\otimes k}\right)=\underbrace{\rho(A)}_{\substack{\text { (img of } \\ A \text {-action) }}}
$$

and this double-centralizer relationship produces

$$
V^{\otimes k} \cong \bigoplus_{\lambda \vdash k} L(\lambda) \otimes S^{\lambda} \quad \text { as a } A-B \text { bimodule. }
$$

