Math 128: Lecture 21

May 14, 2014

Let A be a semisimple algebra over \mathbb{C} .

Let \widehat{A} be an indexing set for the isomorphism classes of simple A-mods.

For $\lambda \in \widehat{A}$, let A^{λ} be a representative for the class corresponding to λ .

Let A be a semisimple algebra over \mathbb{C} .

Let \widehat{A} be an indexing set for the isomorphism classes of simple A-mods.

For $\lambda \in \widehat{A}$, let A^{λ} be a representative for the class corresponding to λ .

For an A module M, the isotypic component of M corresponding to λ is

$$M^{(\lambda)} = \sum_{\substack{U \subseteq M \\ U \cong A^{\lambda}}} U.$$

Let A be a semisimple algebra over \mathbb{C} .

Let \widehat{A} be an indexing set for the isomorphism classes of simple A-mods. For $\lambda \in \widehat{A}$, let A^{λ} be a representative for the class corresponding to λ .

For an A module M, the isotypic component of M corresponding to λ is

$$M^{(\lambda)} = \sum_{\substack{U \subseteq M \\ U \cong A^{\lambda}}} U.$$

Suppose M is finite-dimensional, and let $m_M(\lambda) = \dim(M^{(\lambda)})/\dim(A^{\lambda})$ be the multiplicity of A^{λ} in $M^{(\lambda)}$.

Let A be a semisimple algebra over \mathbb{C} .

Let \widehat{A} be an indexing set for the isomorphism classes of simple A-mods. For $\lambda \in \widehat{A}$, let A^{λ} be a representative for the class corresponding to λ .

For an A module M, the isotypic component of M corresponding to λ is

$$M^{(\lambda)} = \sum_{\substack{U \subseteq M \\ U \cong A^{\lambda}}} U.$$

Suppose M is finite-dimensional, and let $m_M(\lambda) = \dim(M^{(\lambda)})/\dim(A^{\lambda})$ be the multiplicity of A^{λ} in $M^{(\lambda)}$.

Maschke's theorem says that the decomposition

$$M = \bigoplus_{\lambda \in \widehat{M}} M^{(\lambda)}, \quad \text{where } \widehat{M} = \{\lambda \in \widehat{A} \mid M^{(\lambda)} \neq 0\}, \quad \text{ is unique,}$$

whereas

$$M^{(\lambda)} = \bigoplus_{i=1,\dots,m_M(\lambda)} A^{\lambda} = m_M(\lambda) A^{\lambda} \qquad \text{ is not unique.}$$

If A is finite-dimensional, Wedderburn's theorem says

$$A \cong \bigoplus_{\lambda \in \widehat{A}} \operatorname{End}(A^{\lambda})$$

where $\operatorname{End}(A^{\lambda})$ is the algebra of endomorphisms of the vector space A^{λ} . (This theorem comes from the action of A on itself!)

If A is finite-dimensional, Wedderburn's theorem says

$$A \cong \bigoplus_{\lambda \in \widehat{A}} \operatorname{End}(A^{\lambda})$$

where $\operatorname{End}(A^{\lambda})$ is the algebra of endomorphisms of the vector space A^{λ} . (This theorem comes from the action of A on itself!)

So on each block $\operatorname{End}(A^{\lambda})$, there is an identity operator I_{λ} which looks like 1 on $\operatorname{End}(A^{\lambda})$ and 0 on $\operatorname{End}(A^{\mu})$ for $\mu \neq \lambda$.

If A is finite-dimensional, Wedderburn's theorem says

$$A \cong \bigoplus_{\lambda \in \widehat{A}} \operatorname{End}(A^{\lambda})$$

where $\operatorname{End}(A^{\lambda})$ is the algebra of endomorphisms of the vector space A^{λ} . (This theorem comes from the action of A on itself!)

So on each block $\operatorname{End}(A^{\lambda})$, there is an identity operator I_{λ} which looks like 1 on $\operatorname{End}(A^{\lambda})$ and 0 on $\operatorname{End}(A^{\mu})$ for $\mu \neq \lambda$. These operators satisfy

1.
$$I_{\lambda}^2 = I_{\lambda} \; (I_{\lambda} \; {\sf is an } \; idempotent)$$

If A is finite-dimensional, Wedderburn's theorem says

$$A \cong \bigoplus_{\lambda \in \widehat{A}} \operatorname{End}(A^{\lambda})$$

where $\operatorname{End}(A^{\lambda})$ is the algebra of endomorphisms of the vector space A^{λ} . (This theorem comes from the action of A on itself!)

So on each block $\operatorname{End}(A^{\lambda})$, there is an identity operator I_{λ} which looks like 1 on $\operatorname{End}(A^{\lambda})$ and 0 on $\operatorname{End}(A^{\mu})$ for $\mu \neq \lambda$. These operators satisfy

1.
$$I_{\lambda}^2 = I_{\lambda}$$
 $(I_{\lambda}$ is an *idempotent*)

2. $I_{\lambda}I_{\mu}=I_{\mu}I_{\lambda}=0$ for $\lambda\neq 0$ (they are pairwise orthogonal)

If A is finite-dimensional, Wedderburn's theorem says

$$A \cong \bigoplus_{\lambda \in \widehat{A}} \operatorname{End}(A^{\lambda})$$

where $\operatorname{End}(A^{\lambda})$ is the algebra of endomorphisms of the vector space A^{λ} . (This theorem comes from the action of A on itself!)

So on each block $\operatorname{End}(A^{\lambda})$, there is an identity operator I_{λ} which looks like 1 on $\operatorname{End}(A^{\lambda})$ and 0 on $\operatorname{End}(A^{\mu})$ for $\mu \neq \lambda$. These operators satisfy

I_λ² = I_λ (I_λ is an *idempotent*)
 I_λI_μ = I_μI_λ = 0 for λ ≠ 0 (they are pairwise orthogonal)
 ∑_{λ∈Â} I_λ = 1

If A is finite-dimensional, Wedderburn's theorem says

$$A \cong \bigoplus_{\lambda \in \widehat{A}} \operatorname{End}(A^{\lambda})$$

where $\operatorname{End}(A^{\lambda})$ is the algebra of endomorphisms of the vector space A^{λ} . (This theorem comes from the action of A on itself!)

So on each block $\operatorname{End}(A^{\lambda})$, there is an identity operator I_{λ} which looks like 1 on $\operatorname{End}(A^{\lambda})$ and 0 on $\operatorname{End}(A^{\mu})$ for $\mu \neq \lambda$. These operators satisfy

If A is finite-dimensional, Wedderburn's theorem says

$$A \cong \bigoplus_{\lambda \in \widehat{A}} \operatorname{End}(A^{\lambda})$$

where $\operatorname{End}(A^{\lambda})$ is the algebra of endomorphisms of the vector space A^{λ} . (This theorem comes from the action of A on itself!)

So on each block $\operatorname{End}(A^{\lambda})$, there is an identity operator I_{λ} which looks like 1 on $\operatorname{End}(A^{\lambda})$ and 0 on $\operatorname{End}(A^{\mu})$ for $\mu \neq \lambda$. These operators satisfy

- I_λ² = I_λ (I_λ is an *idempotent*)
 I_λI_μ = I_μI_λ = 0 for λ ≠ 0 (they are pairwise orthogonal)
 ∑_{λ∈Â} I_λ = 1
 Z(A) = C{I_λ | λ ∈ Â}
- 5. The action of I_{λ} on any A-module M projects onto $M^{(\lambda)}$.

If A is finite-dimensional, Wedderburn's theorem says

$$A \cong \bigoplus_{\lambda \in \widehat{A}} \operatorname{End}(A^{\lambda})$$

where $\operatorname{End}(A^{\lambda})$ is the algebra of endomorphisms of the vector space A^{λ} . (This theorem comes from the action of A on itself!)

So on each block $\operatorname{End}(A^{\lambda})$, there is an identity operator I_{λ} which looks like 1 on $\operatorname{End}(A^{\lambda})$ and 0 on $\operatorname{End}(A^{\mu})$ for $\mu \neq \lambda$. These operators satisfy

The I_{λ} 's are called the *centrally primitive idempotents* of A.

Let $\operatorname{Hom}(A^{\lambda}, M)$ be the set of A-homs $\phi: A^{\lambda} \to M$.

Let $\operatorname{Hom}(A^{\lambda}, M)$ be the set of A-homs $\phi : A^{\lambda} \to M$. A^{λ} simple implies for all $\phi \in \operatorname{Hom}(A^{\lambda}, M)$,

$$\phi(A^{\lambda}) \cong A^{\lambda} \quad \text{ or } \quad \phi(A^{\lambda}) = 0.$$

So $\phi(A^{\lambda}) \subseteq M^{(\lambda)}$.

Let $\operatorname{Hom}(A^{\lambda}, M)$ be the set of A-homs $\phi : A^{\lambda} \to M$. A^{λ} simple implies for all $\phi \in \operatorname{Hom}(A^{\lambda}, M)$,

$$\phi(A^{\lambda}) \cong A^{\lambda}$$
 or $\phi(A^{\lambda}) = 0.$

So $\phi(A^{\lambda}) \subseteq M^{(\lambda)}$.

There's then a canonical map

 $\operatorname{Hom}(A^{\lambda},M)\otimes A^{\lambda}\to M \quad \text{ defined by } \quad \phi\otimes u\mapsto \phi(u).$

Let $\operatorname{Hom}(A^{\lambda}, M)$ be the set of A-homs $\phi : A^{\lambda} \to M$. A^{λ} simple implies for all $\phi \in \operatorname{Hom}(A^{\lambda}, M)$,

$$\phi(A^{\lambda}) \cong A^{\lambda} \quad \text{ or } \quad \phi(A^{\lambda}) = 0.$$

So $\phi(A^{\lambda}) \subseteq M^{(\lambda)}$.

There's then a canonical map

 $\operatorname{Hom}(A^{\lambda}, M) \otimes A^{\lambda} \to M \quad \text{defined by} \quad \phi \otimes u \mapsto \phi(u).$

Further, this map produces an isomorphism

 $\operatorname{Hom}(A^{\lambda}, M) \otimes A^{\lambda} \cong M^{(\lambda)}.$

(Hom (A^{λ}, M) takes the place of I_{λ}).

Let $\operatorname{Hom}(A^{\lambda}, M)$ be the set of A-homs $\phi : A^{\lambda} \to M$. A^{λ} simple implies for all $\phi \in \operatorname{Hom}(A^{\lambda}, M)$,

$$\phi(A^{\lambda}) \cong A^{\lambda}$$
 or $\phi(A^{\lambda}) = 0.$

So $\phi(A^{\lambda}) \subseteq M^{(\lambda)}$.

There's then a canonical map

 $\operatorname{Hom}(A^{\lambda}, M) \otimes A^{\lambda} \to M \quad \text{defined by} \quad \phi \otimes u \mapsto \phi(u).$

Further, this map produces an isomorphism

 $\operatorname{Hom}(A^{\lambda}, M) \otimes A^{\lambda} \cong M^{(\lambda)}.$

 $(\operatorname{Hom}(A^{\lambda}, M) \text{ takes the place of } I_{\lambda}).$

So $m_M(\lambda) = \dim(\operatorname{Hom}(A^{\lambda}, M)).$

Let M be an A-module. Define the *centralizer* of A (in End(M)) to be

 $\operatorname{End}_A(M) = \{ \phi \in \operatorname{End}(M) \mid a\phi(m) = \phi(a \cdot m) \text{ for all } a \in A, m \in M \}.$

Let M be an A-module. Define the *centralizer* of A (in End(M)) to be

 $\operatorname{End}_A(M) = \{ \phi \in \operatorname{End}(M) \mid a\phi(m) = \phi(a \cdot m) \text{ for all } a \in A, m \in M \}.$

There is a natural action of $\operatorname{End}_A(M)$ on $\operatorname{Hom}(A^{\lambda}, M)$ by

 $b \cdot \phi : v \mapsto b \cdot \phi(v)$

for all $b \in B$, $\phi \in \text{Hom}(A^{\lambda}, M)$, and $v \in A^{\lambda}$. (Check: (1) Well defined, and (2) sends A-mod homs to A-mod homs.)

Let M be an A-module. Define the *centralizer* of A (in End(M)) to be

 $\operatorname{End}_A(M) = \{ \phi \in \operatorname{End}(M) \mid a\phi(m) = \phi(a \cdot m) \text{ for all } a \in A, m \in M \}.$

There is a natural action of $\operatorname{End}_A(M)$ on $\operatorname{Hom}(A^{\lambda}, M)$ by

$$b \cdot \phi : v \mapsto b \cdot \phi(v)$$

for all $b \in B$, $\phi \in \text{Hom}(A^{\lambda}, M)$, and $v \in A^{\lambda}$. (Check: (1) Well defined, and (2) sends A-mod homs to A-mod homs.)

Theorem (Double centralizer theorem)

Let M be a vector space, and $A \subseteq End(M)$. Then the algebra $B = End_A(M)$ is semisimple, one has $End_B(M) = A$, and M has the multiplicity-free complete decomposition

$$M \cong \bigoplus_{\widehat{M}} A^{\lambda} \otimes B^{\lambda}$$

as an (A,B)-bimodule, where $\{B^{\lambda} \mid \lambda \in \widehat{M}\}$ are distinct simple B-mods.