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Decomposing modules
Let A be a semisimple algebra over C.
Let Â be an indexing set for the isomorphism classes of simple A-mods.
For λ ∈ Â, let Aλ be a representative for the class corresponding to λ.

For an A module M , the isotypic component of M corresponding to λ is

M (λ) =
∑
U⊆M
U∼=Aλ

U.

Suppose M is finite-dimensional, and let mM (λ) = dim(M (λ))/dim(Aλ)
be the multiplicity of Aλ in M (λ).

Maschke’s theorem says that the decomposition

M =
⊕
λ∈M̂

M (λ), where M̂ = {λ ∈ Â | M (λ) 6= 0}, is unique,

whereas

M (λ) =
⊕

i=1,...,mM (λ)

Aλ = mM (λ)Aλ is not unique.
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Finite-dimensional case
If A is finite-dimensional, Wedderburn’s theorem says

A ∼=
⊕
λ∈Â

End(Aλ)

where End(Aλ) is the algebra of endomorphisms of the vector
space Aλ. (This theorem comes from the action of A on itself!)

So on each block End(Aλ), there is an identity operator Iλ which
looks like 1 on End(Aλ) and 0 on End(Aµ) for µ 6= λ. These
operators satisfy

1. I2λ = Iλ (Iλ is an idempotent)

2. IλIµ = IµIλ = 0 for λ 6= 0 (they are pairwise orthogonal)

3.
∑

λ∈Â Iλ = 1

4. Z(A) = C{Iλ | λ ∈ Â}
5. The action of Iλ on any A-module M projects onto M (λ).

The Iλ’s are called the centrally primitive idempotents of A.
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λ∈Â Iλ = 1

4. Z(A) = C{Iλ | λ ∈ Â}
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End(Aλ)

where End(Aλ) is the algebra of endomorphisms of the vector
space Aλ. (This theorem comes from the action of A on itself!)

So on each block End(Aλ), there is an identity operator Iλ which
looks like 1 on End(Aλ) and 0 on End(Aµ) for µ 6= λ. These
operators satisfy

1. I2λ = Iλ (Iλ is an idempotent)

2. IλIµ = IµIλ = 0 for λ 6= 0 (they are pairwise orthogonal)

3.
∑
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Infinite-dimensional case

Let Hom(Aλ,M) be the set of A-homs φ : Aλ →M .

Aλ simple implies for all φ ∈ Hom(Aλ,M),

φ(Aλ) ∼= Aλ or φ(Aλ) = 0.

So φ(Aλ) ⊆M (λ).

There’s then a canonical map

Hom(Aλ,M)⊗Aλ →M defined by φ⊗ u 7→ φ(u).

Further, this map produces an isomorphism

Hom(Aλ,M)⊗Aλ ∼=M (λ).

(Hom(Aλ,M) takes the place of Iλ).

So mM (λ) = dim(Hom(Aλ,M)).



Infinite-dimensional case

Let Hom(Aλ,M) be the set of A-homs φ : Aλ →M .

Aλ simple implies for all φ ∈ Hom(Aλ,M),

φ(Aλ) ∼= Aλ or φ(Aλ) = 0.

So φ(Aλ) ⊆M (λ).

There’s then a canonical map

Hom(Aλ,M)⊗Aλ →M defined by φ⊗ u 7→ φ(u).

Further, this map produces an isomorphism

Hom(Aλ,M)⊗Aλ ∼=M (λ).

(Hom(Aλ,M) takes the place of Iλ).

So mM (λ) = dim(Hom(Aλ,M)).



Infinite-dimensional case

Let Hom(Aλ,M) be the set of A-homs φ : Aλ →M .

Aλ simple implies for all φ ∈ Hom(Aλ,M),

φ(Aλ) ∼= Aλ or φ(Aλ) = 0.

So φ(Aλ) ⊆M (λ).

There’s then a canonical map

Hom(Aλ,M)⊗Aλ →M defined by φ⊗ u 7→ φ(u).

Further, this map produces an isomorphism

Hom(Aλ,M)⊗Aλ ∼=M (λ).

(Hom(Aλ,M) takes the place of Iλ).

So mM (λ) = dim(Hom(Aλ,M)).



Infinite-dimensional case

Let Hom(Aλ,M) be the set of A-homs φ : Aλ →M .

Aλ simple implies for all φ ∈ Hom(Aλ,M),

φ(Aλ) ∼= Aλ or φ(Aλ) = 0.

So φ(Aλ) ⊆M (λ).

There’s then a canonical map

Hom(Aλ,M)⊗Aλ →M defined by φ⊗ u 7→ φ(u).

Further, this map produces an isomorphism

Hom(Aλ,M)⊗Aλ ∼=M (λ).

(Hom(Aλ,M) takes the place of Iλ).

So mM (λ) = dim(Hom(Aλ,M)).



Infinite-dimensional case

Let Hom(Aλ,M) be the set of A-homs φ : Aλ →M .

Aλ simple implies for all φ ∈ Hom(Aλ,M),

φ(Aλ) ∼= Aλ or φ(Aλ) = 0.

So φ(Aλ) ⊆M (λ).

There’s then a canonical map

Hom(Aλ,M)⊗Aλ →M defined by φ⊗ u 7→ φ(u).

Further, this map produces an isomorphism

Hom(Aλ,M)⊗Aλ ∼=M (λ).

(Hom(Aλ,M) takes the place of Iλ).

So mM (λ) = dim(Hom(Aλ,M)).



Let M be an A-module.
Define the centralizer of A (in End(M)) to be

EndA(M) = {φ ∈ End(M) | aφ(m) = φ(a ·m) for all a ∈ A,m ∈M}.

There is a natural action of EndA(M) on Hom(Aλ,M) by

b · φ : v 7→ b · φ(v)

for all b ∈ B, φ ∈ Hom(Aλ,M), and v ∈ Aλ.
(Check: (1) Well defined, and (2) sends A-mod homs to A-mod homs.)

Theorem (Double centralizer theorem)
Let M be a vector space, and A ⊆ End(M). Then the algebra
B = EndA(M) is semisimple, one has EndB(M) = A, and M has the
multiplicity-free complete decomposition

M ∼=
⊕
M̂

Aλ ⊗Bλ

as an (A,B)-bimodule, where {Bλ | λ ∈ M̂} are distinct simple B-mods.
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