Math 128: Lecture 21

May 14, 2014

Decomposing modules

Let A be a semisimple algebra over \mathbb{C}.
Let \widehat{A} be an indexing set for the isomorphism classes of simple A-mods. For $\lambda \in \widehat{A}$, let A^{λ} be a representative for the class corresponding to λ.

Decomposing modules

Let A be a semisimple algebra over \mathbb{C}.
Let \widehat{A} be an indexing set for the isomorphism classes of simple A-mods. For $\lambda \in \widehat{A}$, let A^{λ} be a representative for the class corresponding to λ.
For an A module M, the isotypic component of M corresponding to λ is

$$
M^{(\lambda)}=\sum_{\substack{U \subseteq M \\ U \cong A^{\lambda}}} U .
$$

Decomposing modules

Let A be a semisimple algebra over \mathbb{C}.
Let \widehat{A} be an indexing set for the isomorphism classes of simple A-mods. For $\lambda \in \widehat{A}$, let A^{λ} be a representative for the class corresponding to λ.
For an A module M, the isotypic component of M corresponding to λ is

$$
M^{(\lambda)}=\sum_{\substack{U \subseteq M \\ U \cong A^{\lambda}}} U .
$$

Suppose M is finite-dimensional, and let $m_{M}(\lambda)=\operatorname{dim}\left(M^{(\lambda)}\right) / \operatorname{dim}\left(A^{\lambda}\right)$ be the multiplicity of A^{λ} in $M^{(\lambda)}$.

Decomposing modules

Let A be a semisimple algebra over \mathbb{C}.
Let \widehat{A} be an indexing set for the isomorphism classes of simple A-mods. For $\lambda \in \widehat{A}$, let A^{λ} be a representative for the class corresponding to λ.

For an A module M, the isotypic component of M corresponding to λ is

$$
M^{(\lambda)}=\sum_{\substack{U \subseteq M \\ U \cong A^{\lambda}}} U .
$$

Suppose M is finite-dimensional, and let $m_{M}(\lambda)=\operatorname{dim}\left(M^{(\lambda)}\right) / \operatorname{dim}\left(A^{\lambda}\right)$ be the multiplicity of A^{λ} in $M^{(\lambda)}$.

Maschke's theorem says that the decomposition

$$
M=\bigoplus_{\lambda \in \widehat{M}} M^{(\lambda)}, \quad \text { where } \widehat{M}=\left\{\lambda \in \widehat{A} \mid M^{(\lambda)} \neq 0\right\}, \quad \text { is unique }
$$

whereas

$$
M^{(\lambda)}=\bigoplus_{i=1, \ldots, m_{M}(\lambda)} A^{\lambda}=m_{M}(\lambda) A^{\lambda} \quad \text { is not unique. }
$$

Finite-dimensional case

If A is finite-dimensional, Wedderburn's theorem says

$$
A \cong \bigoplus_{\lambda \in \widehat{A}} \operatorname{End}\left(A^{\lambda}\right)
$$

where $\operatorname{End}\left(A^{\lambda}\right)$ is the algebra of endomorphisms of the vector space A^{λ}. (This theorem comes from the action of A on itself!)

Finite-dimensional case

If A is finite-dimensional, Wedderburn's theorem says

$$
A \cong \bigoplus_{\lambda \in \widehat{A}} \operatorname{End}\left(A^{\lambda}\right)
$$

where $\operatorname{End}\left(A^{\lambda}\right)$ is the algebra of endomorphisms of the vector space A^{λ}. (This theorem comes from the action of A on itself!)

So on each block $\operatorname{End}\left(A^{\lambda}\right)$, there is an identity operator I_{λ} which looks like 1 on $\operatorname{End}\left(A^{\lambda}\right)$ and 0 on $\operatorname{End}\left(A^{\mu}\right)$ for $\mu \neq \lambda$.

Finite-dimensional case

If A is finite-dimensional, Wedderburn's theorem says

$$
A \cong \bigoplus_{\lambda \in \widehat{A}} \operatorname{End}\left(A^{\lambda}\right)
$$

where $\operatorname{End}\left(A^{\lambda}\right)$ is the algebra of endomorphisms of the vector space A^{λ}. (This theorem comes from the action of A on itself!)
So on each block $\operatorname{End}\left(A^{\lambda}\right)$, there is an identity operator I_{λ} which looks like 1 on $\operatorname{End}\left(A^{\lambda}\right)$ and 0 on $\operatorname{End}\left(A^{\mu}\right)$ for $\mu \neq \lambda$. These operators satisfy

1. $I_{\lambda}^{2}=I_{\lambda}$ (I_{λ} is an idempotent)

Finite-dimensional case

If A is finite-dimensional, Wedderburn's theorem says

$$
A \cong \bigoplus_{\lambda \in \widehat{A}} \operatorname{End}\left(A^{\lambda}\right)
$$

where $\operatorname{End}\left(A^{\lambda}\right)$ is the algebra of endomorphisms of the vector space A^{λ}. (This theorem comes from the action of A on itself!)
So on each block $\operatorname{End}\left(A^{\lambda}\right)$, there is an identity operator I_{λ} which looks like 1 on $\operatorname{End}\left(A^{\lambda}\right)$ and 0 on $\operatorname{End}\left(A^{\mu}\right)$ for $\mu \neq \lambda$. These operators satisfy

1. $I_{\lambda}^{2}=I_{\lambda}$ (I_{λ} is an idempotent)
2. $I_{\lambda} I_{\mu}=I_{\mu} I_{\lambda}=0$ for $\lambda \neq 0$ (they are pairwise orthogonal)

Finite-dimensional case

If A is finite-dimensional, Wedderburn's theorem says

$$
A \cong \bigoplus_{\lambda \in \widehat{A}} \operatorname{End}\left(A^{\lambda}\right)
$$

where $\operatorname{End}\left(A^{\lambda}\right)$ is the algebra of endomorphisms of the vector space A^{λ}. (This theorem comes from the action of A on itself!)
So on each block $\operatorname{End}\left(A^{\lambda}\right)$, there is an identity operator I_{λ} which looks like 1 on $\operatorname{End}\left(A^{\lambda}\right)$ and 0 on $\operatorname{End}\left(A^{\mu}\right)$ for $\mu \neq \lambda$. These operators satisfy

1. $I_{\lambda}^{2}=I_{\lambda}$ (I_{λ} is an idempotent)
2. $I_{\lambda} I_{\mu}=I_{\mu} I_{\lambda}=0$ for $\lambda \neq 0$ (they are pairwise orthogonal)
3. $\sum_{\lambda \in \widehat{A}} I_{\lambda}=1$

Finite-dimensional case

If A is finite-dimensional, Wedderburn's theorem says

$$
A \cong \bigoplus_{\lambda \in \widehat{A}} \operatorname{End}\left(A^{\lambda}\right)
$$

where $\operatorname{End}\left(A^{\lambda}\right)$ is the algebra of endomorphisms of the vector space A^{λ}. (This theorem comes from the action of A on itself!)
So on each block $\operatorname{End}\left(A^{\lambda}\right)$, there is an identity operator I_{λ} which looks like 1 on $\operatorname{End}\left(A^{\lambda}\right)$ and 0 on $\operatorname{End}\left(A^{\mu}\right)$ for $\mu \neq \lambda$. These operators satisfy

1. $I_{\lambda}^{2}=I_{\lambda}$ (I_{λ} is an idempotent)
2. $I_{\lambda} I_{\mu}=I_{\mu} I_{\lambda}=0$ for $\lambda \neq 0$ (they are pairwise orthogonal)
3. $\sum_{\lambda \in \widehat{A}} I_{\lambda}=1$
4. $Z(A)=\mathbb{C}\left\{I_{\lambda} \mid \lambda \in \widehat{A}\right\}$

Finite-dimensional case

If A is finite-dimensional, Wedderburn's theorem says

$$
A \cong \bigoplus_{\lambda \in \widehat{A}} \operatorname{End}\left(A^{\lambda}\right)
$$

where $\operatorname{End}\left(A^{\lambda}\right)$ is the algebra of endomorphisms of the vector space A^{λ}. (This theorem comes from the action of A on itself!)

So on each block $\operatorname{End}\left(A^{\lambda}\right)$, there is an identity operator I_{λ} which looks like 1 on $\operatorname{End}\left(A^{\lambda}\right)$ and 0 on $\operatorname{End}\left(A^{\mu}\right)$ for $\mu \neq \lambda$. These operators satisfy

1. $I_{\lambda}^{2}=I_{\lambda}$ (I_{λ} is an idempotent)
2. $I_{\lambda} I_{\mu}=I_{\mu} I_{\lambda}=0$ for $\lambda \neq 0$ (they are pairwise orthogonal)
3. $\sum_{\lambda \in \widehat{A}} I_{\lambda}=1$
4. $Z(A)=\mathbb{C}\left\{I_{\lambda} \mid \lambda \in \widehat{A}\right\}$
5. The action of I_{λ} on any A-module M projects onto $M^{(\lambda)}$.

Finite-dimensional case

If A is finite-dimensional, Wedderburn's theorem says

$$
A \cong \bigoplus_{\lambda \in \widehat{A}} \operatorname{End}\left(A^{\lambda}\right)
$$

where $\operatorname{End}\left(A^{\lambda}\right)$ is the algebra of endomorphisms of the vector space A^{λ}. (This theorem comes from the action of A on itself!)

So on each block $\operatorname{End}\left(A^{\lambda}\right)$, there is an identity operator I_{λ} which looks like 1 on $\operatorname{End}\left(A^{\lambda}\right)$ and 0 on $\operatorname{End}\left(A^{\mu}\right)$ for $\mu \neq \lambda$. These operators satisfy

1. $I_{\lambda}^{2}=I_{\lambda}$ (I_{λ} is an idempotent)
2. $I_{\lambda} I_{\mu}=I_{\mu} I_{\lambda}=0$ for $\lambda \neq 0$ (they are pairwise orthogonal)
3. $\sum_{\lambda \in \widehat{A}} I_{\lambda}=1$
4. $Z(A)=\mathbb{C}\left\{I_{\lambda} \mid \lambda \in \widehat{A}\right\}$
5. The action of I_{λ} on any A-module M projects onto $M^{(\lambda)}$.

The I_{λ} 's are called the centrally primitive idempotents of A.

Infinite-dimensional case

Let $\operatorname{Hom}\left(A^{\lambda}, M\right)$ be the set of A-homs $\phi: A^{\lambda} \rightarrow M$.

Infinite-dimensional case

Let $\operatorname{Hom}\left(A^{\lambda}, M\right)$ be the set of A-homs $\phi: A^{\lambda} \rightarrow M$. A^{λ} simple implies for all $\phi \in \operatorname{Hom}\left(A^{\lambda}, M\right)$,

$$
\phi\left(A^{\lambda}\right) \cong A^{\lambda} \quad \text { or } \quad \phi\left(A^{\lambda}\right)=0 .
$$

So $\phi\left(A^{\lambda}\right) \subseteq M^{(\lambda)}$.

Infinite-dimensional case

Let $\operatorname{Hom}\left(A^{\lambda}, M\right)$ be the set of A-homs $\phi: A^{\lambda} \rightarrow M$.
A^{λ} simple implies for all $\phi \in \operatorname{Hom}\left(A^{\lambda}, M\right)$,

$$
\phi\left(A^{\lambda}\right) \cong A^{\lambda} \quad \text { or } \quad \phi\left(A^{\lambda}\right)=0 .
$$

So $\phi\left(A^{\lambda}\right) \subseteq M^{(\lambda)}$.
There's then a canonical map

$$
\operatorname{Hom}\left(A^{\lambda}, M\right) \otimes A^{\lambda} \rightarrow M \quad \text { defined by } \quad \phi \otimes u \mapsto \phi(u) .
$$

Infinite-dimensional case

Let $\operatorname{Hom}\left(A^{\lambda}, M\right)$ be the set of A-homs $\phi: A^{\lambda} \rightarrow M$.
A^{λ} simple implies for all $\phi \in \operatorname{Hom}\left(A^{\lambda}, M\right)$,

$$
\phi\left(A^{\lambda}\right) \cong A^{\lambda} \quad \text { or } \quad \phi\left(A^{\lambda}\right)=0 .
$$

So $\phi\left(A^{\lambda}\right) \subseteq M^{(\lambda)}$.
There's then a canonical map

$$
\operatorname{Hom}\left(A^{\lambda}, M\right) \otimes A^{\lambda} \rightarrow M \quad \text { defined by } \quad \phi \otimes u \mapsto \phi(u) .
$$

Further, this map produces an isomorphism

$$
\operatorname{Hom}\left(A^{\lambda}, M\right) \otimes A^{\lambda} \cong M^{(\lambda)} .
$$

$\left(\operatorname{Hom}\left(A^{\lambda}, M\right)\right.$ takes the place of $\left.I_{\lambda}\right)$.

Infinite-dimensional case

Let $\operatorname{Hom}\left(A^{\lambda}, M\right)$ be the set of A-homs $\phi: A^{\lambda} \rightarrow M$.
A^{λ} simple implies for all $\phi \in \operatorname{Hom}\left(A^{\lambda}, M\right)$,

$$
\phi\left(A^{\lambda}\right) \cong A^{\lambda} \quad \text { or } \quad \phi\left(A^{\lambda}\right)=0 .
$$

So $\phi\left(A^{\lambda}\right) \subseteq M^{(\lambda)}$.
There's then a canonical map

$$
\operatorname{Hom}\left(A^{\lambda}, M\right) \otimes A^{\lambda} \rightarrow M \quad \text { defined by } \quad \phi \otimes u \mapsto \phi(u) .
$$

Further, this map produces an isomorphism

$$
\operatorname{Hom}\left(A^{\lambda}, M\right) \otimes A^{\lambda} \cong M^{(\lambda)} .
$$

$\left(\operatorname{Hom}\left(A^{\lambda}, M\right)\right.$ takes the place of $\left.I_{\lambda}\right)$.
So $m_{M}(\lambda)=\operatorname{dim}\left(\operatorname{Hom}\left(A^{\lambda}, M\right)\right)$.

Let M be an A-module.
Define the centralizer of A (in $\operatorname{End}(M)$) to be
$\operatorname{End}_{A}(M)=\{\phi \in \operatorname{End}(M) \mid a \phi(m)=\phi(a \cdot m)$ for all $a \in A, m \in M\}$.

Let M be an A-module.
Define the centralizer of A (in $\operatorname{End}(M)$) to be
$\operatorname{End}_{A}(M)=\{\phi \in \operatorname{End}(M) \mid a \phi(m)=\phi(a \cdot m)$ for all $a \in A, m \in M\}$.

There is a natural action of $\operatorname{End}_{A}(M)$ on $\operatorname{Hom}\left(A^{\lambda}, M\right)$ by

$$
b \cdot \phi: v \mapsto b \cdot \phi(v)
$$

for all $b \in B, \phi \in \operatorname{Hom}\left(A^{\lambda}, M\right)$, and $v \in A^{\lambda}$.
(Check: (1) Well defined, and (2) sends A-mod homs to A-mod homs.)

Let M be an A-module.
Define the centralizer of A (in $\operatorname{End}(M)$) to be

$$
\operatorname{End}_{A}(M)=\{\phi \in \operatorname{End}(M) \mid a \phi(m)=\phi(a \cdot m) \text { for all } a \in A, m \in M\} .
$$

There is a natural action of $\operatorname{End}_{A}(M)$ on $\operatorname{Hom}\left(A^{\lambda}, M\right)$ by

$$
b \cdot \phi: v \mapsto b \cdot \phi(v)
$$

for all $b \in B, \phi \in \operatorname{Hom}\left(A^{\lambda}, M\right)$, and $v \in A^{\lambda}$.
(Check: (1) Well defined, and (2) sends A-mod homs to A-mod homs.)
Theorem (Double centralizer theorem)
Let M be a vector space, and $A \subseteq \operatorname{End}(M)$. Then the algebra $B=\operatorname{End}_{A}(M)$ is semisimple, one has $\operatorname{End}_{B}(M)=A$, and M has the multiplicity-free complete decomposition

$$
M \cong \bigoplus_{\widehat{M}} A^{\lambda} \otimes B^{\lambda}
$$

as an (A, B)-bimodule, where $\left\{B^{\lambda} \mid \lambda \in \widehat{M}\right\}$ are distinct simple B-mods.

