Math 128: Lecture 20

May 12, 2014

Weigh space multiplicities:

We're trying to calculate m_{μ}^{λ} , the dimension of $L(\lambda)_{\mu}$ in $L(\lambda)$, with $\lambda \in P^{+} = \mathbb{Z}_{\geq 0}\{\omega_{1}, \dots, \omega_{r}\}.$

1. First solution: Freudenthal's multiplicity formula.

$$m_{\mu}^{\lambda} = \frac{2}{\langle \lambda, \lambda + 2\rho \rangle - \langle \mu, \mu + 2\rho \rangle} \sum_{\alpha \in R^{+}} \sum_{i=1}^{\infty} \langle \mu + i\alpha, \alpha \rangle m_{\mu+i\alpha}^{\lambda}.$$

2. Second solution: Weyl character formula. The character of a finite-dimensional \mathfrak{g} -module V is

$$\operatorname{ch}(V) = \sum_{\lambda \in P} \dim(V_{\lambda}) X^{\lambda}.$$

For irreducible modules, the character is given by

$$\operatorname{ch}(L(\lambda)) = \frac{a_{\lambda+\rho}}{a_{\rho}} \quad \text{where} \quad a_{\lambda+\rho} = \sum_{w \in W} \operatorname{det}(w) X^{w(\lambda+\rho)}.$$

3. Third solution: Path model.

A crystal \mathcal{B} is a set of paths closed under $\{f_i, e_i \mid i = 1, ..., r\}$. The crystal graph has vertices $p \in \mathcal{B}$ and edges $p \xrightarrow{i} f_i p$.

Working example

Fix $\mathfrak{g} = A_2$ with base $B = \{\beta_1, \beta_2 \mid \beta_i = \varepsilon_i - \varepsilon_{i+1}\}$. Calculate m_0^{ρ} .

A highest weight path is a path p satisfying $e_i p = 0$ for all i, which is equivalent to

$$p(1) \in P^+$$
 and $p(t) \in C - \rho$ for all $t \in [0, 1]$.

A highest weight path is a path p satisfying $e_i p = 0$ for all i, which is equivalent to

 $p(1) \in P^+$ and $p(t) \in C - \rho$ for all $t \in [0, 1]$.

The weight of any path p is wt(p) = p(1).

Prop. The crystals generated highest weight paths of the same weight are isomorphic.

Let $\mathcal{B}(\lambda)$ be the crystal generated by any h.w. path of weight $\lambda \in P^+.$

A highest weight path is a path p satisfying $e_i p = 0$ for all i, which is equivalent to

 $p(1) \in P^+ \qquad \text{and} \qquad p(t) \in C - \rho \text{ for all } t \in [0,1].$

The weight of any path p is wt(p) = p(1).

Prop. The crystals generated highest weight paths of the same weight are isomorphic.

Let $\mathcal{B}(\lambda)$ be the crystal generated by any h.w. path of weight $\lambda \in P^+.$

The character of a crystal is

$$\operatorname{ch}(\mathcal{B}) = \sum_{p \in \mathcal{B}} X^{\operatorname{wt}(p)}.$$

Theorem

For
$$\lambda \in P^+$$
, $\operatorname{ch}(\mathcal{B}(\lambda)) = \operatorname{ch}(L(\lambda))$.

The character of a crystal is
$$\mathrm{ch}(\mathcal{B}) = \sum_{p\in\mathcal{B}} X^{\mathrm{wt}(p)}.$$

Theorem

For $\lambda \in P^+$, $\operatorname{ch}(\mathcal{B}(\lambda)) = \operatorname{ch}(L(\lambda))$.

Proposition Let $\mathcal{B}, \mathcal{B}'$ be finite crystals. 1. $\operatorname{ch}(\mathcal{B}) = \operatorname{ch}(\mathcal{B}')$ if and only if $\mathcal{B} \cong \mathcal{B}'$. 2. The union $\mathcal{B} \sqcup \mathcal{B}'$ is a crystal, and $\operatorname{ch}(\mathcal{B} \sqcup \mathcal{B}') = \operatorname{ch}(\mathcal{B}) + \operatorname{ch}(\mathcal{B}')$. 3. $\operatorname{ch}(\mathcal{B}) = \sum_{\substack{p \in \mathcal{B} \\ p \text{ is highest weight}}} \operatorname{ch}(\mathcal{B}(\operatorname{wt}(p)))$.

Tensor product rules

The *concatenation* of two paths p, p' is defined by

$$pp' = \begin{cases} p(2t) & 0 \le t \le 1/2, \\ p(1) + p'(2(t-1/2)) & 1/2 \le t \le 1. \end{cases}$$

Note that wt(pp') = wt(p) + wt(p').

Tensor product rules

The *concatenation* of two paths p, p' is defined by

$$pp' = \begin{cases} p(2t) & 0 \le t \le 1/2, \\ p(1) + p'(2(t-1/2)) & 1/2 \le t \le 1. \end{cases}$$

Note that $\operatorname{wt}(pp') = \operatorname{wt}(p) + \operatorname{wt}(p')$.

Theorem

1. For finite-dimensional \mathfrak{g} -modules V, V',

$$\mathcal{B}(V \otimes V') = \{ pp' \mid p \in \mathcal{B}(V), p' \in \mathcal{B}(V') \}.$$

Tensor product rules

The *concatenation* of two paths p, p' is defined by

$$pp' = \begin{cases} p(2t) & 0 \le t \le 1/2, \\ p(1) + p'(2(t-1/2)) & 1/2 \le t \le 1. \end{cases}$$

Note that $\operatorname{wt}(pp') = \operatorname{wt}(p) + \operatorname{wt}(p')$.

Theorem

1. For finite-dimensional \mathfrak{g} -modules V, V',

$$\mathcal{B}(V \otimes V') = \{ pp' \mid p \in \mathcal{B}(V), p' \in \mathcal{B}(V') \}$$

2. With $\lambda, \mu \in P^+$, and p_{λ}^+ highest weight in $\mathcal{B}(\lambda)$,

$$\operatorname{ch}(L(\lambda) \otimes L(\mu)) = \sum_{\substack{q \in \mathcal{B}(\mu) \\ p_{\lambda}^{+}q \text{ highest weight}}} \operatorname{ch}(L(\lambda + \operatorname{wt}(q))).$$

 $\mathcal{B}(L(\omega_1)\otimes L(\omega_1))$ is the set containing

 $\mathcal{B}(L(\omega_1)\otimes L(\omega_1))$ is the set containing

 $\mathcal{B}(L(\omega_1)\otimes L(\omega_1))$ is the set containing

Highest weight paths:

 p_1^2 with weight $2\omega_1$ p_1p_2 with weight ω_2 $\mathcal{B}(L(\omega_1)\otimes L(\omega_1))$ is the set containing

Highest weight paths:

 p_1^2 with weight $2\omega_1$ p_1p_2 with weight ω_2

So $\operatorname{ch}(L(\omega_1) \otimes L(\omega_1)) = \operatorname{ch}(L(2\omega_1)) + \operatorname{ch}(L(\omega_2)),$

 $\mathcal{B}(L(\omega_1)\otimes L(\omega_1))$ is the set containing

Highest weight paths:

 p_1^2 with weight $2\omega_1$ p_1p_2 with weight ω_2

So $\operatorname{ch}(L(\omega_1) \otimes L(\omega_1)) = \operatorname{ch}(L(2\omega_1)) + \operatorname{ch}(L(\omega_2))$, implying $L(\omega_1) \otimes L(\omega_1) \cong L(2\omega_1) \oplus L(\omega_2)$ $\mathcal{B}(L(\omega_1)\otimes L(\omega_1)) = \mathcal{B}(L(\Box)\otimes L(\Box))$ is the set containing

Highest weight paths:

 $p_1^2 \text{ with weight } 2\omega_1 = \square$ $p_1p_2 \text{ with weight } \omega_2 = \square$ So $\operatorname{ch}(L(\omega_1) \otimes L(\omega_1)) = \operatorname{ch}(L(2\omega_1)) + \operatorname{ch}(L(\omega_2)), \text{ implying}$ $L(\square) \otimes L(\square) = L(\omega_1) \otimes L(\omega_1) \cong L(2\omega_1) \oplus L(\omega_2) = L(\square) \oplus L(\square)$

 $\mathcal{B}(\omega_1) = \{p_i \mid i = 1, \dots, r+1\} \text{ where } p_i \text{ is the straight-line path to } \varepsilon_i - \frac{1}{r+1}(\varepsilon_1 + \varepsilon_2 + \dots + \varepsilon_{r+1}).$

$$p_1 = \nearrow$$
 $p_2 = \checkmark$ and $p_3 = \checkmark$.

.

 $\mathcal{B}(\omega_1) = \{p_i \mid i = 1, \dots, r+1\} \text{ where } p_i \text{ is the straight-line path to } \varepsilon_i - \frac{1}{r+1}(\varepsilon_1 + \varepsilon_2 + \dots + \varepsilon_{r+1}).$

 $p_1 = \checkmark \qquad p_2 = \checkmark \qquad \text{and} \qquad p_3 = \checkmark$

Generate $\mathcal{B}(\lambda)$ with the path $p_{\lambda}^+ = p_1^{\lambda_1} p_2^{\lambda_2} \cdots p_r^{\lambda_r}$.

 $\mathcal{B}(\omega_1) = \{p_i \mid i = 1, \dots, r+1\}$ where p_i is the straight-line path to $\varepsilon_i - \frac{1}{r+1}(\varepsilon_1 + \varepsilon_2 + \dots + \varepsilon_{r+1})$.

 $p_1 = \checkmark \qquad p_2 = \checkmark \qquad \text{and} \qquad p_3 = \checkmark$

Generate $\mathcal{B}(\lambda)$ with the path $p_{\lambda}^{+} = p_{1}^{\lambda_{1}} p_{2}^{\lambda_{2}} \cdots p_{r}^{\lambda_{r}}$. Is this ok? If $p = p_{i_{1}} p_{i_{2}} \cdots p_{i_{n}}$, then $p(t) \in C - \rho \ \forall t$ iff every *initial path* $p_{i_{1}} \cdots p_{i_{j}}$ has weight

$$\operatorname{wt}(p_{i_1}\cdots p_{i_j}) = \sum_{k=1}^{j} (\omega_{i_k} - \omega_{i_k-1}) \in P^+$$

(iff its weight is the sum of ω_i 's).

 $\mathcal{B}(\omega_1) = \{p_i \mid i = 1, \dots, r+1\} \text{ where } p_i \text{ is the straight-line path to } \varepsilon_i - \frac{1}{r+1}(\varepsilon_1 + \varepsilon_2 + \dots + \varepsilon_{r+1}).$

 $p_1 = \checkmark \qquad p_2 = \checkmark \qquad \text{and} \qquad p_3 = \downarrow$

Generate $\mathcal{B}(\lambda)$ with the path $p_{\lambda}^{+} = p_{1}^{\lambda_{1}} p_{2}^{\lambda_{2}} \cdots p_{r}^{\lambda_{r}}$. Is this ok? If $p = p_{i_{1}} p_{i_{2}} \cdots p_{i_{n}}$, then $p(t) \in C - \rho \ \forall t$ iff every *initial path* $p_{i_{1}} \cdots p_{i_{j}}$ has weight

$$\operatorname{wt}(p_{i_1}\cdots p_{i_j}) = \sum_{k=1}^{j} (\omega_{i_k} - \omega_{i_k-1}) \in P^+$$

(iff its weight is the sum of ω_i 's). Another way: define the *reading word* of p to be $i_1i_2\cdots i_n$.

 $\mathcal{B}(\omega_1) = \{p_i \mid i = 1, \dots, r+1\} \text{ where } p_i \text{ is the straight-line path to } \varepsilon_i - \frac{1}{r+1}(\varepsilon_1 + \varepsilon_2 + \dots + \varepsilon_{r+1}).$

 $p_1 = \checkmark \qquad p_2 = \backsim \qquad \text{and} \qquad p_3 = \checkmark$

Generate $\mathcal{B}(\lambda)$ with the path $p_{\lambda}^{+} = p_{1}^{\lambda_{1}} p_{2}^{\lambda_{2}} \cdots p_{r}^{\lambda_{r}}$. Is this ok? If $p = p_{i_{1}} p_{i_{2}} \cdots p_{i_{n}}$, then $p(t) \in C - \rho \ \forall t$ iff every *initial path* $p_{i_{1}} \cdots p_{i_{j}}$ has weight

$$\operatorname{wt}(p_{i_1}\cdots p_{i_j}) = \sum_{k=1}^j (\omega_{i_k} - \omega_{i_k-1}) \in P^+$$

(iff its weight is the sum of ω_i 's).

Another way: define the *reading word* of p to be $i_1i_2\cdots i_n$. Then $p(t) \in C - \rho \ \forall t$ if any only if every *initial subword* $i_1i_2\cdots i_j$ of the reading word of p has the property that is contains more 1's than 2's, more 2's than 3's, and so on.

