Math 128: Lecture 20

May 12, 2014

Weigh space multiplicities:

We're trying to calculate m_{μ}^{λ}, the dimension of $L(\lambda)_{\mu}$ in $L(\lambda)$, with $\lambda \in P^{+}=\mathbb{Z}_{\geq 0}\left\{\omega_{1}, \ldots, \omega_{r}\right\}$.

1. First solution: Freudenthal's multiplicity formula.

$$
m_{\mu}^{\lambda}=\frac{2}{\langle\lambda, \lambda+2 \rho\rangle-\langle\mu, \mu+2 \rho\rangle} \sum_{\alpha \in R^{+}} \sum_{i=1}^{\infty}\langle\mu+i \alpha, \alpha\rangle m_{\mu+i \alpha}^{\lambda} .
$$

2. Second solution: Weyl character formula. The character of a finite-dimensional \mathfrak{g}-module V is

$$
\operatorname{ch}(V)=\sum_{\lambda \in P} \operatorname{dim}\left(V_{\lambda}\right) X^{\lambda} .
$$

For irreducible modules, the character is given by

$$
\operatorname{ch}(L(\lambda))=\frac{a_{\lambda+\rho}}{a_{\rho}} \quad \text { where } \quad a_{\lambda+\rho}=\sum_{w \in W} \operatorname{det}(w) X^{w(\lambda+\rho)}
$$

3. Third solution: Path model.

Littelmann path model

Littelmann path model

Littelmann path model

Littelmann path model

Littelmann path model

Littelmann path model

Littelmann path model

Littelmann path model

Littelmann path model

Littelmann path model

A crystal \mathcal{B} is a set of paths closed under $\left\{f_{i}, e_{i} \mid i=1, \ldots, r\right\}$.
The crystal graph has vertices $p \in \mathcal{B}$ and edges $p \xrightarrow{i} f_{i} p$.

Working example

Fix $\mathfrak{g}=A_{2}$ with base $B=\left\{\beta_{1}, \beta_{2} \mid \beta_{i}=\varepsilon_{i}-\varepsilon_{i+1}\right\}$. Calculate m_{0}^{ρ}.

Highest weight crystals

A highest weight path is a path p satisfying $e_{i} p=0$ for all i, which is equivalent to

$$
p(1) \in P^{+} \quad \text { and } \quad p(t) \in C-\rho \text { for all } t \in[0,1] .
$$

Highest weight crystals

A highest weight path is a path p satisfying $e_{i} p=0$ for all i, which is equivalent to

$$
p(1) \in P^{+} \quad \text { and } \quad p(t) \in C-\rho \text { for all } t \in[0,1] .
$$

The weight of any path p is $\mathrm{wt}(p)=p(1)$.
Prop. The crystals generated highest weight paths of the same weight are isomorphic.
Let $\mathcal{B}(\lambda)$ be the crystal generated by any h.w. path of weight $\lambda \in P^{+}$.

Highest weight crystals

A highest weight path is a path p satisfying $e_{i} p=0$ for all i, which is equivalent to

$$
p(1) \in P^{+} \quad \text { and } \quad p(t) \in C-\rho \text { for all } t \in[0,1] .
$$

The weight of any path p is $\mathrm{wt}(p)=p(1)$.
Prop. The crystals generated highest weight paths of the same weight are isomorphic.
Let $\mathcal{B}(\lambda)$ be the crystal generated by any h.w. path of weight $\lambda \in P^{+}$.

The character of a crystal is

$$
\operatorname{ch}(\mathcal{B})=\sum_{p \in \mathcal{B}} X^{\mathrm{wt}(p)}
$$

Theorem
For $\lambda \in P^{+}, \operatorname{ch}(\mathcal{B}(\lambda))=\operatorname{ch}(L(\lambda))$.

Highest weight crystals

The character of a crystal is

$$
\operatorname{ch}(\mathcal{B})=\sum_{p \in \mathcal{B}} X^{\mathrm{wt}(p)}
$$

Theorem
For $\lambda \in P^{+}, \operatorname{ch}(\mathcal{B}(\lambda))=\operatorname{ch}(L(\lambda))$.

Proposition

Let $\mathcal{B}, \mathcal{B}^{\prime}$ be finite crystals.

1. $\operatorname{ch}(\mathcal{B})=\operatorname{ch}\left(\mathcal{B}^{\prime}\right)$ if and only if $\mathcal{B} \cong \mathcal{B}^{\prime}$.
2. The union $\mathcal{B} \sqcup \mathcal{B}^{\prime}$ is a crystal, and

$$
\operatorname{ch}\left(\mathcal{B} \sqcup \mathcal{B}^{\prime}\right)=\operatorname{ch}(\mathcal{B})+\operatorname{ch}\left(\mathcal{B}^{\prime}\right)
$$

3. $\operatorname{ch}(\mathcal{B})=\sum_{\substack{p \in \mathcal{B} \\ p \text { is highest weight }}} \operatorname{ch}(\mathcal{B}(\operatorname{wt}(p)))$.

Tensor product rules

The concatenation of two paths p, p^{\prime} is defined by

$$
p p^{\prime}= \begin{cases}p(2 t) & 0 \leq t \leq 1 / 2 \\ p(1)+p^{\prime}(2(t-1 / 2)) & 1 / 2 \leq t \leq 1\end{cases}
$$

Note that $\mathrm{wt}\left(p p^{\prime}\right)=\mathrm{wt}(p)+\mathrm{wt}\left(p^{\prime}\right)$.

Tensor product rules

The concatenation of two paths p, p^{\prime} is defined by

$$
p p^{\prime}= \begin{cases}p(2 t) & 0 \leq t \leq 1 / 2 \\ p(1)+p^{\prime}(2(t-1 / 2)) & 1 / 2 \leq t \leq 1\end{cases}
$$

Note that $\mathrm{wt}\left(p p^{\prime}\right)=\mathrm{wt}(p)+\mathrm{wt}\left(p^{\prime}\right)$.
Theorem

1. For finite-dimensional \mathfrak{g}-modules V, V^{\prime},

$$
\mathcal{B}\left(V \otimes V^{\prime}\right)=\left\{p p^{\prime} \mid p \in \mathcal{B}(V), p^{\prime} \in \mathcal{B}\left(V^{\prime}\right)\right\} .
$$

Tensor product rules

The concatenation of two paths p, p^{\prime} is defined by

$$
p p^{\prime}= \begin{cases}p(2 t) & 0 \leq t \leq 1 / 2 \\ p(1)+p^{\prime}(2(t-1 / 2)) & 1 / 2 \leq t \leq 1\end{cases}
$$

Note that $\mathrm{wt}\left(p p^{\prime}\right)=\mathrm{wt}(p)+\mathrm{wt}\left(p^{\prime}\right)$.
Theorem

1. For finite-dimensional \mathfrak{g}-modules V, V^{\prime},

$$
\mathcal{B}\left(V \otimes V^{\prime}\right)=\left\{p p^{\prime} \mid p \in \mathcal{B}(V), p^{\prime} \in \mathcal{B}\left(V^{\prime}\right)\right\} .
$$

2. With $\lambda, \mu \in P^{+}$, and p_{λ}^{+}highest weight in $\mathcal{B}(\lambda)$,

$$
\operatorname{ch}(L(\lambda) \otimes L(\mu))=\sum_{\substack{q \in \mathcal{B}(\mu) \\ p_{\lambda}^{+} q \text { highest weight }}} \operatorname{ch}(L(\lambda+\mathrm{wt}(q)))
$$

$\mathcal{B}\left(L\left(\omega_{1}\right) \otimes L\left(\omega_{1}\right)\right)$ is the set containing

$$
\begin{aligned}
& p_{1}^{2}=> \\
& p_{1} p_{2}=>^{K}, \\
& p_{1} p_{3}=>\downarrow, \\
& p_{2} p_{1}=>\text {, } \\
& p_{2}^{2}=>\lll \\
& p_{2} p_{3}=\downarrow>, \\
& p_{3} p_{1}=\mathbb{T}_{0}, \\
& p_{3} p_{2}=\stackrel{K}{K}, \\
& p_{3}^{2}=\not \downarrow \text {. }
\end{aligned}
$$

$\mathcal{B}\left(L\left(\omega_{1}\right) \otimes L\left(\omega_{1}\right)\right)$ is the set containing

$$
\rightarrow P_{1}=
$$

$\mathcal{B}\left(L\left(\omega_{1}\right) \otimes L\left(\omega_{1}\right)\right)$ is the set containing

$$
\begin{aligned}
& \rightarrow p_{1}^{2}=\overbrace{}^{\circ}, \\
& p_{1} p_{2}=\ggg< \\
& p_{1} p_{3}=>\downarrow, \\
& p_{2} p_{1}=>\text {, } \\
& p_{2}^{2}= \\
& p_{3} p_{1}=\gg_{0}, \\
& p_{3} p_{2}=\underset{R}{ }, \\
& p_{3}^{2}=\nrightarrow \text {. }
\end{aligned}
$$

Highest weight paths:

$$
\begin{gathered}
p_{1}^{2} \text { with weight } 2 \omega_{1} \\
p_{1} p_{2} \text { with weight } \omega_{2}
\end{gathered}
$$

$\mathcal{B}\left(L\left(\omega_{1}\right) \otimes L\left(\omega_{1}\right)\right)$ is the set containing

$$
\begin{aligned}
& \rightarrow p_{1}^{2}=\overbrace{}^{\circ}, \\
& p_{1} p_{2}=\ggg< \\
& p_{1} p_{3}=>\downarrow, \\
& p_{2} p_{1}=>\text {, } \\
& p_{2}^{2}= \\
& p_{3} p_{1}=>\underbrace{}_{0}, \\
& p_{3} p_{2}=\mathbb{K}, \\
& p_{3}^{2}=\underset{\downarrow}{\downarrow} \text {. }
\end{aligned}
$$

Highest weight paths:
p_{1}^{2} with weight $2 \omega_{1}$
$p_{1} p_{2}$ with weight ω_{2}

So $\operatorname{ch}\left(L\left(\omega_{1}\right) \otimes L\left(\omega_{1}\right)\right)=\operatorname{ch}\left(L\left(2 \omega_{1}\right)\right)+\operatorname{ch}\left(L\left(\omega_{2}\right)\right)$,
$\mathcal{B}\left(L\left(\omega_{1}\right) \otimes L\left(\omega_{1}\right)\right)$ is the set containing
$\rightarrow p_{1}^{2}=>$,

$$
p_{3} p_{1}=Ћ_{c}
$$

$$
p_{3}^{2}=\neq
$$

Highest weight paths:
p_{1}^{2} with weight $2 \omega_{1}$
$p_{1} p_{2}$ with weight ω_{2}
So $\operatorname{ch}\left(L\left(\omega_{1}\right) \otimes L\left(\omega_{1}\right)\right)=\operatorname{ch}\left(L\left(2 \omega_{1}\right)\right)+\operatorname{ch}\left(L\left(\omega_{2}\right)\right)$, implying

$$
L\left(\omega_{1}\right) \otimes L\left(\omega_{1}\right) \cong L\left(2 \omega_{1}\right) \oplus L\left(\omega_{2}\right)
$$

$\mathcal{B}\left(L\left(\omega_{1}\right) \otimes L\left(\omega_{1}\right)\right)=\mathcal{B}(L(\square) \otimes L(\square))$ is the set containing

$p_{3} p_{2}=T$,

Highest weight paths:

$$
\begin{gathered}
p_{1}^{2} \text { with weight } 2 \omega_{1}=\square \\
p_{1} p_{2} \text { with weight } \omega_{2}=\boxminus
\end{gathered}
$$

So $\operatorname{ch}\left(L\left(\omega_{1}\right) \otimes L\left(\omega_{1}\right)\right)=\operatorname{ch}\left(L\left(2 \omega_{1}\right)\right)+\operatorname{ch}\left(L\left(\omega_{2}\right)\right)$, implying
$L(\square) \otimes L(\square)=L\left(\omega_{1}\right) \otimes L\left(\omega_{1}\right) \cong L\left(2 \omega_{1}\right) \oplus L\left(\omega_{2}\right)=L(\square) \oplus L(\mathbb{B})$

Back to tableaux

$$
\begin{aligned}
& \mathcal{B}\left(\omega_{1}\right)=\left\{p_{i} \mid i=1, \ldots, r+1\right\} \text { where } p_{i} \text { is the straight-line path } \\
& \text { to } \varepsilon_{i}-\frac{1}{r+1}\left(\varepsilon_{1}+\varepsilon_{2}+\cdots+\varepsilon_{r+1}\right) .
\end{aligned}
$$

$$
p_{1}=\boldsymbol{\nearrow} \quad p_{2}=K \quad \text { and } \quad p_{3}=\downarrow
$$

Back to tableaux

$\mathcal{B}\left(\omega_{1}\right)=\left\{p_{i} \mid i=1, \ldots, r+1\right\}$ where p_{i} is the straight-line path to $\varepsilon_{i}-\frac{1}{r+1}\left(\varepsilon_{1}+\varepsilon_{2}+\cdots+\varepsilon_{r+1}\right)$.

$$
p_{1}=\nearrow \quad p_{2}=\mathbb{K} \quad \text { and } \quad p_{3}=\downarrow
$$

Generate $\mathcal{B}(\lambda)$ with the path $p_{\lambda}^{+}=p_{1}^{\lambda_{1}} p_{2}^{\lambda_{2}} \cdots p_{r}^{\lambda_{r}}$.

Back to tableaux

$\mathcal{B}\left(\omega_{1}\right)=\left\{p_{i} \mid i=1, \ldots, r+1\right\}$ where p_{i} is the straight-line path to $\varepsilon_{i}-\frac{1}{r+1}\left(\varepsilon_{1}+\varepsilon_{2}+\cdots+\varepsilon_{r+1}\right)$.

$$
p_{1}=\nearrow \quad p_{2}=K \quad \text { and } \quad p_{3}=\downarrow
$$

Generate $\mathcal{B}(\lambda)$ with the path $p_{\lambda}^{+}=p_{1}^{\lambda_{1}} p_{2}^{\lambda_{2}} \cdots p_{r}^{\lambda_{r}}$.
Is this ok?
If $p=p_{i_{1}} p_{i_{2}} \cdots p_{i_{n}}$, then $p(t) \in C-\rho \forall t$ iff
every initial path $p_{i_{1}} \cdots p_{i_{j}}$ has weight

$$
\mathrm{wt}\left(p_{i_{1}} \cdots p_{i_{j}}\right)=\sum_{k=1}^{j}\left(\omega_{i_{k}}-\omega_{i_{k}-1}\right) \in P^{+}
$$

(iff its weight is the sum of ω_{i} 's).

Back to tableaux

$\mathcal{B}\left(\omega_{1}\right)=\left\{p_{i} \mid i=1, \ldots, r+1\right\}$ where p_{i} is the straight-line path to $\varepsilon_{i}-\frac{1}{r+1}\left(\varepsilon_{1}+\varepsilon_{2}+\cdots+\varepsilon_{r+1}\right)$.

$$
p_{1}=\nearrow \quad p_{2}=K \quad \text { and } \quad p_{3}=\downarrow
$$

Generate $\mathcal{B}(\lambda)$ with the path $p_{\lambda}^{+}=p_{1}^{\lambda_{1}} p_{2}^{\lambda_{2}} \cdots p_{r}^{\lambda_{r}}$.
Is this ok?
If $p=p_{i_{1}} p_{i_{2}} \cdots p_{i_{n}}$, then $p(t) \in C-\rho \forall t$ iff
every initial path $p_{i_{1}} \cdots p_{i_{j}}$ has weight

$$
\operatorname{wt}\left(p_{i_{1}} \cdots p_{i_{j}}\right)=\sum_{k=1}^{j}\left(\omega_{i_{k}}-\omega_{i_{k}-1}\right) \in P^{+}
$$

(iff its weight is the sum of ω_{i} 's).
Another way: define the reading word of p to be $i_{1} i_{2} \cdots i_{n}$.

Back to tableaux

$\mathcal{B}\left(\omega_{1}\right)=\left\{p_{i} \mid i=1, \ldots, r+1\right\}$ where p_{i} is the straight-line path to $\varepsilon_{i}-\frac{1}{r+1}\left(\varepsilon_{1}+\varepsilon_{2}+\cdots+\varepsilon_{r+1}\right)$.

$$
p_{1}=\nearrow \quad p_{2}=K \quad \text { and } \quad p_{3}=\downarrow
$$

Generate $\mathcal{B}(\lambda)$ with the path $p_{\lambda}^{+}=p_{1}^{\lambda_{1}} p_{2}^{\lambda_{2}} \cdots p_{r}^{\lambda_{r}}$.
Is this ok?
If $p=p_{i_{1}} p_{i_{2}} \cdots p_{i_{n}}$, then $p(t) \in C-\rho \forall t$ iff
every initial path $p_{i_{1}} \cdots p_{i_{j}}$ has weight

$$
\mathrm{wt}\left(p_{i_{1}} \cdots p_{i_{j}}\right)=\sum_{k=1}^{j}\left(\omega_{i_{k}}-\omega_{i_{k}-1}\right) \in P^{+}
$$

(iff its weight is the sum of ω_{i} 's).
Another way: define the reading word of p to be $i_{1} i_{2} \cdots i_{n}$.
Then $p(t) \in C-\rho \forall t$ if any only if every initial subword $i_{1} i_{2} \cdots i_{j}$ of the reading word of p has the property that is contains more 1's than 2 's, more 2 's than 3 's, and so on.

