Math 128: Lecture 2

March 26, 2014

A (complex) Lie algebra is a vector space \mathfrak{g} over \mathbb{C} with a bracket $[]:, \mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}$ satisfying
(a) (skew symmetry) $[x, y]=-[y, x]$, and
(b) (Jacobi identity) $[x,[y, z]]+[y,[z, x]]+[z,[x, y]]=0$, for all $x, y, z \in \mathfrak{g}$.

A (complex) Lie algebra is a vector space \mathfrak{g} over \mathbb{C} with a bracket $[]:, \mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}$ satisfying
(a) (skew symmetry) $[x, y]=-[y, x]$, and
(b) (Jacobi identity) $[x,[y, z]]+[y,[z, x]]+[z,[x, y]]=0$, for all $x, y, z \in \mathfrak{g}$.

Favorite examples:

$$
\mathfrak{g l}_{n}(\mathbb{C})=\operatorname{End}\left(\mathbb{C}^{n}\right)
$$

A (complex) Lie algebra is a vector space \mathfrak{g} over \mathbb{C} with a bracket $[]:, \mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}$ satisfying
(a) (skew symmetry) $[x, y]=-[y, x]$, and
(b) (Jacobi identity) $[x,[y, z]]+[y,[z, x]]+[z,[x, y]]=0$, for all $x, y, z \in \mathfrak{g}$.

Favorite examples:

$$
\begin{aligned}
& \mathfrak{g l}_{n}(\mathbb{C})=\operatorname{End}\left(\mathbb{C}^{n}\right) \\
& \mathfrak{s l}_{n}(\mathbb{C})=\left\{x \in \mathfrak{g l}_{n}(\mathbb{C}) \mid \operatorname{tr}(x)=0\right\}
\end{aligned}
$$

A (complex) Lie algebra is a vector space \mathfrak{g} over \mathbb{C} with a bracket $[]:, \mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}$ satisfying
(a) (skew symmetry) $[x, y]=-[y, x]$, and
(b) (Jacobi identity) $[x,[y, z]]+[y,[z, x]]+[z,[x, y]]=0$, for all $x, y, z \in \mathfrak{g}$.

Favorite examples:

$$
\begin{aligned}
& \mathfrak{g l}_{n}(\mathbb{C})= \operatorname{End}\left(\mathbb{C}^{n}\right) \\
& \mathfrak{s l}_{n}(\mathbb{C})=\left\{x \in \mathfrak{g l}_{n}(\mathbb{C}) \mid \operatorname{tr}(x)=0\right\} \\
& \mathfrak{s o}_{n}(\mathbb{C})=\left\{x \in \mathfrak{s l}_{n} \mid\langle x u, v\rangle+\langle u, x v\rangle=0 \text { for all } u, v \in \mathbb{C}^{n}\right\}, \\
& \quad \text { where }\langle,\rangle \text { is a symmetric form on } \mathbb{C}^{n} .
\end{aligned}
$$

A (complex) Lie algebra is a vector space \mathfrak{g} over \mathbb{C} with a bracket $[]:, \mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}$ satisfying
(a) (skew symmetry) $[x, y]=-[y, x]$, and
(b) (Jacobi identity) $[x,[y, z]]+[y,[z, x]]+[z,[x, y]]=0$, for all $x, y, z \in \mathfrak{g}$.

Favorite examples:

$$
\begin{aligned}
& \mathfrak{g l}_{n}(\mathbb{C})=\operatorname{End}\left(\mathbb{C}^{n}\right) \\
& \mathfrak{s l}_{n}(\mathbb{C})=\left\{x \in \mathfrak{g l}_{n}(\mathbb{C}) \mid \operatorname{tr}(x)=0\right\} \\
& \mathfrak{s o}_{n}(\mathbb{C})=\left\{x \in \mathfrak{s l}_{n} \mid\langle x u, v\rangle+\langle u, x v\rangle=0 \text { for all } u, v \in \mathbb{C}^{n}\right\}, \\
& \quad \text { where }\langle,\rangle \text { is a symmetric form on } \mathbb{C}^{n} . \\
& \mathfrak{s p}_{n}(\mathbb{C})=\left\{x \in \mathfrak{s l}_{n} \left\lvert\, \begin{array}{rl}
\left.\langle x u, v\rangle+\langle u, x v\rangle=0 \text { for all } u, v \in \mathbb{C}^{n}\right\},
\end{array}\right.\right. \text { where }\langle,\rangle \text { is a skew-symmetric form on } \mathbb{C}^{n} .
\end{aligned}
$$

Classical Lie algebras

An algebra is simple if
(1) \mathfrak{g} has no nontrivial proper ideals
(the only subspaces $\mathfrak{a} \subseteq \mathfrak{g}$ satisfying $[\mathfrak{a}, \mathfrak{g}] \subseteq \mathfrak{a}$ are \mathfrak{g} and 0), and
(2) \mathfrak{g} is not abelian $([\mathfrak{g}, \mathfrak{g}] \neq 0)$.

Classical Lie algebras

An algebra is simple if
(1) \mathfrak{g} has no nontrivial proper ideals (the only subspaces $\mathfrak{a} \subseteq \mathfrak{g}$ satisfying $[\mathfrak{a}, \mathfrak{g}] \subseteq \mathfrak{a}$ are \mathfrak{g} and 0), and
(2) \mathfrak{g} is not abelian $([\mathfrak{g}, \mathfrak{g}] \neq 0)$.

Four infinite families of simple Lie algebras, called the classical Lie algebras:
Type $A_{r}: \mathfrak{s l}_{r+1}(\mathbb{C}), r \geq 1$
Type $B_{r}: \mathfrak{s o}_{2 r+1}(\mathbb{C}), r \geq 2$
Type $C_{r}: \mathfrak{s p}_{2 r}(\mathbb{C}), r \geq 3$
Type $D_{r}: \mathfrak{s o}_{2 r}(\mathbb{C}), r \geq 4$

Classical Lie algebras

An algebra is simple if
(1) \mathfrak{g} has no nontrivial proper ideals (the only subspaces $\mathfrak{a} \subseteq \mathfrak{g}$ satisfying $[\mathfrak{a}, \mathfrak{g}] \subseteq \mathfrak{a}$ are \mathfrak{g} and 0), and
(2) \mathfrak{g} is not abelian $([\mathfrak{g}, \mathfrak{g}] \neq 0)$.

Four infinite families of simple Lie algebras, called the classical Lie algebras:

```
Type \(A_{r}: \mathfrak{s l}_{r+1}(\mathbb{C}), r \geq 1\)
Type \(B_{r}: \mathfrak{s o}_{2 r+1}(\mathbb{C}), r \geq 2\)
Type \(C_{r}: \mathfrak{s p}_{2 r}(\mathbb{C}), r \geq 3\)
Type \(D_{r}: \mathfrak{s o}_{2 r}(\mathbb{C}), r \geq 4\)
```

The exceptional Lie algebras,

$$
E_{6}, E_{7}, E_{8}, F_{4}, \text { and } G_{2}
$$

complete the list of simple complex Lie algebras.

Standard and adjoint representations

A representation of a Lie algebra is a vector space V together with a Lie algebra homomorphism $\rho: \mathfrak{g} \rightarrow \operatorname{End}(V)$ satisfying $\rho([x, y])=\rho(x) \rho(y)-\rho(y) \rho(x)$.

Standard and adjoint representations

A representation of a Lie algebra is a vector space V together with a Lie algebra homomorphism $\rho: \mathfrak{g} \rightarrow \operatorname{End}(V)$ satisfying $\rho([x, y])=\rho(x) \rho(y)-\rho(y) \rho(x)$.

We saw the standard representations of $\mathfrak{s l}_{n}, \mathfrak{s o}_{n}$, and $\mathfrak{s p}_{n}$.

Standard and adjoint representations

A representation of a Lie algebra is a vector space V together with a Lie algebra homomorphism $\rho: \mathfrak{g} \rightarrow \operatorname{End}(V)$ satisfying $\rho([x, y])=\rho(x) \rho(y)-\rho(y) \rho(x)$.

We saw the standard representations of $\mathfrak{s l}_{n}, \mathfrak{s o}_{n}$, and $\mathfrak{s p}_{n}$.
The adjoint representation of a Lie algebra \mathfrak{g} is

$$
\begin{aligned}
\operatorname{ad}: \mathfrak{g} & \rightarrow \operatorname{End}(\mathfrak{g}) \\
x & \mapsto \operatorname{ad}_{x}=[\cdot, x], \quad \text { i.e. } \operatorname{ad}_{x}(y)=[y, x] .
\end{aligned}
$$

Algebras \leftrightarrow Lie algebras

Let A be an algebra over \mathbb{C}.
Then let $L(A)$ be the Lie algebra with
Vector space: A
Bracket: $[x, y]=x y-y x$.

Algebras \leftrightarrow Lie algebras

Let A be an algebra over \mathbb{C}.
Then let $L(A)$ be the Lie algebra with
Vector space: A
Bracket: $[x, y]=x y-y x$.
Let \mathfrak{g} be a complex Lie algebra.
Then let $U \mathfrak{g}$ be the algebra with
Vector space: \mathbb{C}-span(free group on \mathfrak{g}-basis)
Multiplication: satisfies relation $x y-y x=[x, y]$

Algebras \leftrightarrow Lie algebras

Let A be an algebra over \mathbb{C}.
Then let $L(A)$ be the Lie algebra with
Vector space: A
Bracket: $[x, y]=x y-y x$.
Let \mathfrak{g} be a complex Lie algebra.
Then let $U \mathfrak{g}$ be the algebra with
Vector space: \mathbb{C}-span(free group on \mathfrak{g}-basis)
Multiplication: satisfies relation $x y-y x=[x, y]$
$U \mathfrak{g}$ is called the universal enveloping algebra of \mathfrak{g}.

