Math 128: Lecture 2

March 26, 2014

A (complex) Lie algebra is a vector space \mathfrak{g} over \mathbb{C} with a bracket $[,]: \mathfrak{g} \otimes \mathfrak{g} \to \mathfrak{g}$ satisfying

(a) (skew symmetry) [x, y] = -[y, x], and

(b) (Jacobi identity) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0,

for all $x, y, z \in \mathfrak{g}$.

Favorite examples:

 $\mathfrak{gl}_n(\mathbb{C})=\mathrm{End}(\mathbb{C}^n)$

Favorite examples:

$$\begin{split} \mathfrak{gl}_n(\mathbb{C}) &= \mathrm{End}(\mathbb{C}^n) \\ \mathfrak{sl}_n(\mathbb{C}) &= \{ x \in \mathfrak{gl}_n(\mathbb{C}) \ | \ \mathrm{tr}(x) = 0 \} \end{split}$$

Favorite examples:

$$\begin{split} \mathfrak{gl}_n(\mathbb{C}) &= \operatorname{End}(\mathbb{C}^n) \\ \mathfrak{sl}_n(\mathbb{C}) &= \{ x \in \mathfrak{gl}_n(\mathbb{C}) \mid \operatorname{tr}(x) = 0 \} \\ \mathfrak{so}_n(\mathbb{C}) &= \{ x \in \mathfrak{sl}_n \mid \langle xu, v \rangle + \langle u, xv \rangle = 0 \text{ for all } u, v \in \mathbb{C}^n \}, \\ & \text{where } \langle, \rangle \text{ is a symmetric form on } \mathbb{C}^n. \end{split}$$

Favorite examples:

$$\begin{split} \mathfrak{gl}_n(\mathbb{C}) &= \operatorname{End}(\mathbb{C}^n) \\ \mathfrak{sl}_n(\mathbb{C}) &= \{x \in \mathfrak{gl}_n(\mathbb{C}) \ | \ \mathrm{tr}(x) = 0\} \\ \mathfrak{so}_n(\mathbb{C}) &= \{x \in \mathfrak{sl}_n \ | \ \langle xu, v \rangle + \langle u, xv \rangle = 0 \text{ for all } u, v \in \mathbb{C}^n\}, \\ & \text{where } \langle, \rangle \text{ is a symmetric form on } \mathbb{C}^n. \\ \mathfrak{sp}_n(\mathbb{C}) &= \{x \in \mathfrak{sl}_n \ | \ \langle xu, v \rangle + \langle u, xv \rangle = 0 \text{ for all } u, v \in \mathbb{C}^n\}, \\ & \text{where } \langle, \rangle \text{ is a skew-symmetric form on } \mathbb{C}^n. \end{split}$$

Classical Lie algebras

An algebra is simple if

- (1) \mathfrak{g} has no nontrivial proper ideals (the only subspaces $\mathfrak{a} \subseteq \mathfrak{g}$ satisfying $[\mathfrak{a}, \mathfrak{g}] \subseteq \mathfrak{a}$ are \mathfrak{g} and 0), and
- (2) \mathfrak{g} is not abelian ($[\mathfrak{g},\mathfrak{g}] \neq 0$).

Classical Lie algebras

An algebra is simple if

- (1) \mathfrak{g} has no nontrivial proper ideals (the only subspaces $\mathfrak{a} \subseteq \mathfrak{g}$ satisfying $[\mathfrak{a}, \mathfrak{g}] \subseteq \mathfrak{a}$ are \mathfrak{g} and 0), and
- (2) \mathfrak{g} is not abelian ($[\mathfrak{g},\mathfrak{g}] \neq 0$).

Four infinite families of simple Lie algebras, called the *classical Lie algebras*:

Type A_r : $\mathfrak{sl}_{r+1}(\mathbb{C})$, $r \ge 1$ Type B_r : $\mathfrak{so}_{2r+1}(\mathbb{C})$, $r \ge 2$ Type C_r : $\mathfrak{sp}_{2r}(\mathbb{C})$, $r \ge 3$ Type D_r : $\mathfrak{so}_{2r}(\mathbb{C})$, $r \ge 4$

Classical Lie algebras

An algebra is simple if

- (1) \mathfrak{g} has no nontrivial proper ideals (the only subspaces $\mathfrak{a} \subseteq \mathfrak{g}$ satisfying $[\mathfrak{a}, \mathfrak{g}] \subseteq \mathfrak{a}$ are \mathfrak{g} and 0), and
- (2) \mathfrak{g} is not abelian ($[\mathfrak{g},\mathfrak{g}] \neq 0$).

Four infinite families of simple Lie algebras, called the *classical Lie algebras*:

Type
$$A_r$$
: $\mathfrak{sl}_{r+1}(\mathbb{C})$, $r \ge 1$
Type B_r : $\mathfrak{so}_{2r+1}(\mathbb{C})$, $r \ge 2$
Type C_r : $\mathfrak{sp}_{2r}(\mathbb{C})$, $r \ge 3$
Type D_r : $\mathfrak{so}_{2r}(\mathbb{C})$, $r \ge 4$

The exceptional Lie algebras, E_6, E_7, E_8, F_4 , and G_2 , complete the list of simple complex Lie algebras.

Standard and adjoint representations

A representation of a Lie algebra is a vector space V together with a Lie algebra homomorphism $\rho : \mathfrak{g} \to \operatorname{End}(V)$ satisfying $\rho([x,y]) = \rho(x)\rho(y) - \rho(y)\rho(x).$

Standard and adjoint representations

A representation of a Lie algebra is a vector space V together with a Lie algebra homomorphism $\rho : \mathfrak{g} \to \operatorname{End}(V)$ satisfying $\rho([x,y]) = \rho(x)\rho(y) - \rho(y)\rho(x)$.

We saw the *standard* representations of \mathfrak{sl}_n , \mathfrak{so}_n , and \mathfrak{sp}_n .

Standard and adjoint representations

A representation of a Lie algebra is a vector space V together with a Lie algebra homomorphism $\rho : \mathfrak{g} \to \operatorname{End}(V)$ satisfying $\rho([x,y]) = \rho(x)\rho(y) - \rho(y)\rho(x)$.

We saw the *standard* representations of \mathfrak{sl}_n , \mathfrak{so}_n , and \mathfrak{sp}_n .

The *adjoint* representation of a Lie algebra \mathfrak{g} is

$$\operatorname{ad} : \mathfrak{g} \to \operatorname{End}(\mathfrak{g})$$

 $x \mapsto \operatorname{ad}_x = [\cdot, x], \quad \text{ i.e. } \operatorname{ad}_x(y) = [y, x].$

$\mathsf{Algebras} \leftrightarrow \mathsf{Lie} \ \mathsf{algebras}$

Let A be an algebra over \mathbb{C} . Then let L(A) be the Lie algebra with Vector space: A Bracket: [x, y] = xy - yx.

$\mathsf{Algebras} \leftrightarrow \mathsf{Lie} \ \mathsf{algebras}$

```
Let A be an algebra over \mathbb{C}.
Then let L(A) be the Lie algebra with
Vector space: A
Bracket: [x, y] = xy - yx.
```

Let \mathfrak{g} be a complex Lie algebra. Then let $U\mathfrak{g}$ be the algebra with Vector space: \mathbb{C} -span(free group on \mathfrak{g} -basis) Multiplication: satisfies relation xy - yx = [x, y]

$\mathsf{Algebras} \leftrightarrow \mathsf{Lie} \ \mathsf{algebras}$

```
Let A be an algebra over \mathbb{C}.
Then let L(A) be the Lie algebra with
Vector space: A
Bracket: [x, y] = xy - yx.
```

Let \mathfrak{g} be a complex Lie algebra. Then let $U\mathfrak{g}$ be the algebra with Vector space: \mathbb{C} -span(free group on \mathfrak{g} -basis) Multiplication: satisfies relation xy - yx = [x, y]

 $U\mathfrak{g}$ is called the *universal enveloping algebra* of \mathfrak{g} .