Math 128: Lecture 19

May 9, 2014

Last time:

We're trying to calculate m_{μ}^{λ} , the dimension of $L(\lambda)_{\mu}$ in $L(\lambda)$, with $\lambda \in P^{+} = \mathbb{Z}_{\geq 0}\{\omega_{1}, \dots, \omega_{r}\}.$

1. Even though $\{y_1^{\ell_1}\cdots y^{\ell_m}v_\lambda^+\}$ is a spanning set of weight vectors, it's not very helpful.

Last time:

We're trying to calculate m_{μ}^{λ} , the dimension of $L(\lambda)_{\mu}$ in $L(\lambda)$, with $\lambda \in P^{+} = \mathbb{Z}_{\geq 0}\{\omega_{1}, \dots, \omega_{r}\}.$

- 1. Even though $\{y_1^{\ell_1}\cdots y^{\ell_m}v_\lambda^+\}$ is a spanning set of weight vectors, it's not very helpful.
- 2. First alternative: Freudenthal's multiplicity formula.

$$m_{\mu}^{\lambda} = \frac{2}{\langle \lambda, \lambda + 2\rho \rangle - \langle \mu, \mu + 2\rho \rangle} \sum_{\alpha \in R^{+}} \sum_{i=1}^{\infty} \langle \mu + i\alpha, \alpha \rangle m_{\mu+i\alpha}^{\lambda}.$$

Last time:

We're trying to calculate m_{μ}^{λ} , the dimension of $L(\lambda)_{\mu}$ in $L(\lambda)$, with $\lambda \in P^{+} = \mathbb{Z}_{\geq 0}\{\omega_{1}, \dots, \omega_{r}\}.$

- 1. Even though $\{y_1^{\ell_1}\cdots y^{\ell_m}v_\lambda^+\}$ is a spanning set of weight vectors, it's not very helpful.
- 2. First alternative: Freudenthal's multiplicity formula. $m_{\mu}^{\lambda} = \frac{2}{\langle \lambda, \lambda + 2\rho \rangle - \langle \mu, \mu + 2\rho \rangle} \sum_{\alpha \in R^{+}} \sum_{i=1}^{\infty} \langle \mu + i\alpha, \alpha \rangle m_{\mu+i\alpha}^{\lambda}.$
- 3. Second alternative: Weyl character formula. The character of a finite-dimensional \mathfrak{g} -module V is

$$\operatorname{ch}(V) = \sum_{\lambda \in P} \dim(V_{\lambda}) X^{\lambda}.$$

For irreducible modules, the character is given by

$$\operatorname{ch}(L(\lambda)) = \frac{a_{\lambda+\rho}}{a_{\rho}} \quad \text{where} \quad a_{\lambda+\rho} = \sum_{w \in W} \operatorname{det}(w) X^{w(\lambda+\rho)}.$$

Working example

Fix $\mathfrak{g} = A_2$ with base $B = \{\beta_1, \beta_2 \mid \beta_i = \varepsilon_i - \varepsilon_{i+1}\}$. Calculate the multiplicities of the weights in $L(\lambda)$ when

$$\lambda = \beta_1 + \beta_2 = \omega_1 + \omega_2 = \rho.$$

We have now showed $m_0^{\lambda} = 2$ in two ways.

 $\begin{array}{ll} \mbox{Highest weight crystals} \\ \mbox{Since } \rho = \sum_i \omega_i, \mbox{ the map} \\ \\ P^{++} \rightarrow P^+ \\ C \cap P \rightarrow \bar{C} \cap P \end{array} \mbox{ defined by } \lambda \mapsto \lambda - \rho \end{array}$

is a bijection.

A highest weight path is a path p satisfying

$$e_i p = 0$$
 for all $i = 1, \ldots, r$,

 $\begin{array}{ll} \mbox{Highest weight crystals} \\ \mbox{Since } \rho = \sum_i \omega_i, \mbox{ the map} \\ \\ P^{++} \rightarrow P^+ \\ C \cap P \rightarrow \bar{C} \cap P \end{array} \mbox{ defined by } \lambda \mapsto \lambda - \rho \end{array}$

is a bijection.

A highest weight path is a path p satisfying

$$e_i p = 0$$
 for all $i = 1, \ldots, r$,

which is the same as

 $p(1) \in P^+$ and $p(t) \in C - \rho$ for all $t \in [0, 1]$.

 $\begin{array}{ll} \mbox{Highest weight crystals} \\ \mbox{Since } \rho = \sum_i \omega_i, \mbox{ the map} \\ \\ P^{++} \rightarrow P^+ \\ C \cap P \rightarrow \bar{C} \cap P \end{array} \mbox{ defined by } \lambda \mapsto \lambda - \rho \end{array}$

is a bijection.

A highest weight path is a path p satisfying

$$e_i p = 0$$
 for all $i = 1, \ldots, r$,

which is the same as

 $p(1) \in P^+$ and $p(t) \in C - \rho$ for all $t \in [0, 1]$.

The *weight* of any path p is wt(p) = p(1).

 $\begin{array}{l} \mbox{Highest weight crystals}\\ \mbox{Since } \rho = \sum_i \omega_i, \mbox{ the map}\\ \\ P^{++} \rightarrow P^+\\ C \cap P \rightarrow \bar{C} \cap P \end{array} \ \ \ \mbox{defined by} \qquad \lambda \mapsto \lambda - \rho \end{array}$

is a bijection.

A highest weight path is a path p satisfying

$$e_i p = 0$$
 for all $i = 1, \dots, r$,

which is the same as

 $p(1) \in P^+$ and $p(t) \in C - \rho$ for all $t \in [0, 1]$.

The weight of any path p is wt(p) = p(1).

Proposition

Let p and p' be highest weight paths of the same weight. Then the crystals generated p and p' are isomorphic.

The character of a crystal is

$$\operatorname{ch}(\mathcal{B}) = \sum_{p \in \mathcal{B}} X^{\operatorname{wt}(p)}.$$

The character of a crystal is

$$\operatorname{ch}(\mathcal{B}) = \sum_{p \in \mathcal{B}} X^{\operatorname{wt}(p)}.$$

Theorem For $\lambda \in P^+$, $ch(\mathcal{B}(\lambda)) = ch(L(\lambda))$.

The character of a crystal is

$$\operatorname{ch}(\mathcal{B}) = \sum_{p \in \mathcal{B}} X^{\operatorname{wt}(p)}.$$

Theorem For $\lambda \in P^+$, $\operatorname{ch}(\mathcal{B}(\lambda)) = \operatorname{ch}(L(\lambda))$.

Proposition Let $\mathcal{B}, \mathcal{B}'$ be finite crystals.

1. $ch(\mathcal{B}) = ch(\mathcal{B}')$ if and only if $\mathcal{B} \cong \mathcal{B}'$.

The character of a crystal is

$$\operatorname{ch}(\mathcal{B}) = \sum_{p \in \mathcal{B}} X^{\operatorname{wt}(p)}.$$

Theorem For $\lambda \in P^+$, $ch(\mathcal{B}(\lambda)) = ch(L(\lambda))$.

Proposition

Let $\mathcal{B}, \mathcal{B}'$ be finite crystals.

- 1. $ch(\mathcal{B}) = ch(\mathcal{B}')$ if and only if $\mathcal{B} \cong \mathcal{B}'$.
- 2. The union $\mathcal{B} \sqcup \mathcal{B}'$ is a crystal, and

$$\operatorname{ch}(\mathcal{B}\sqcup\mathcal{B}')=\operatorname{ch}(\mathcal{B})+\operatorname{ch}(\mathcal{B}').$$

The character of a crystal is

$$\operatorname{ch}(\mathcal{B}) = \sum_{p \in \mathcal{B}} X^{\operatorname{wt}(p)}.$$

Theorem For $\lambda \in P^+$, $ch(\mathcal{B}(\lambda)) = ch(L(\lambda))$.

Proposition

Let $\mathcal{B}, \mathcal{B}'$ be finite crystals.

- 1. $ch(\mathcal{B}) = ch(\mathcal{B}')$ if and only if $\mathcal{B} \cong \mathcal{B}'$.
- 2. The union $\mathcal{B} \sqcup \mathcal{B}'$ is a crystal, and

$$\operatorname{ch}(\mathcal{B}\sqcup\mathcal{B}')=\operatorname{ch}(\mathcal{B})+\operatorname{ch}(\mathcal{B}').$$

Tensor product rules

The *concatenation* of two paths p, p' is defined by

$$pp' = \begin{cases} p(2t) & 0 \le t \le 1/2, \\ p(1) + p'(2(t-1/2)) & 1/2 \le t \le 1. \end{cases}$$

Note that wt(pp') = wt(p) + wt(p').

Tensor product rules

The *concatenation* of two paths p, p' is defined by

$$pp' = \begin{cases} p(2t) & 0 \le t \le 1/2, \\ p(1) + p'(2(t-1/2)) & 1/2 \le t \le 1. \end{cases}$$

Note that $\operatorname{wt}(pp') = \operatorname{wt}(p) + \operatorname{wt}(p')$.

Theorem

1. For finite-dimensional \mathfrak{g} -modules V, V',

$$\mathcal{B}(V \otimes V') = \{ pp' \mid p \in \mathcal{B}(V), p' \in \mathcal{B}(V') \}.$$

Tensor product rules

The *concatenation* of two paths p, p' is defined by

$$pp' = \begin{cases} p(2t) & 0 \le t \le 1/2, \\ p(1) + p'(2(t-1/2)) & 1/2 \le t \le 1. \end{cases}$$

Note that $\operatorname{wt}(pp') = \operatorname{wt}(p) + \operatorname{wt}(p')$.

Theorem

1. For finite-dimensional \mathfrak{g} -modules V, V',

$$\mathcal{B}(V \otimes V') = \{ pp' \mid p \in \mathcal{B}(V), p' \in \mathcal{B}(V') \}$$

2. With $\lambda, \mu \in P^+$, and p_{λ}^+ highest weight in $\mathcal{B}(\lambda)$,

$$\operatorname{ch}(L(\lambda) \otimes L(\mu)) = \sum_{\substack{q \in \mathcal{B}(\mu) \\ p_{\lambda}^{+}q \text{ highest weight}}} \operatorname{ch}(L(\lambda + \operatorname{wt}(q))).$$