Math 128: Lecture 19

May 9, 2014

Last time:

We're trying to calculate m_{μ}^{λ}, the dimension of $L(\lambda)_{\mu}$ in $L(\lambda)$, with $\lambda \in P^{+}=\mathbb{Z}_{\geq 0}\left\{\omega_{1}, \ldots, \omega_{r}\right\}$.

1. Even though $\left\{y_{1}^{\ell_{1}} \cdots y^{\ell_{m}} v_{\lambda}^{+}\right\}$is a spanning set of weight vectors, it's not very helpful.

Last time:

We're trying to calculate m_{μ}^{λ}, the dimension of $L(\lambda)_{\mu}$ in $L(\lambda)$, with $\lambda \in P^{+}=\mathbb{Z}_{\geq 0}\left\{\omega_{1}, \ldots, \omega_{r}\right\}$.

1. Even though $\left\{y_{1}^{\ell_{1}} \cdots y^{\ell_{m}} v_{\lambda}^{+}\right\}$is a spanning set of weight vectors, it's not very helpful.
2. First alternative: Freudenthal's multiplicity formula.

$$
m_{\mu}^{\lambda}=\frac{2}{\langle\lambda, \lambda+2 \rho\rangle-\langle\mu, \mu+2 \rho\rangle} \sum_{\alpha \in R^{+}} \sum_{i=1}^{\langle\mu+i \alpha, \alpha\rangle m_{\mu+i \alpha}^{\lambda} .}
$$

Last time:

We're trying to calculate m_{μ}^{λ}, the dimension of $L(\lambda)_{\mu}$ in $L(\lambda)$, with $\lambda \in P^{+}=\mathbb{Z}_{\geq 0}\left\{\omega_{1}, \ldots, \omega_{r}\right\}$.

1. Even though $\left\{y_{1}^{\ell_{1}} \cdots y^{\ell_{m}} v_{\lambda}^{+}\right\}$is a spanning set of weight vectors, it's not very helpful.
2. First alternative: Freudenthal's multiplicity formula.

$$
m_{\mu}^{\lambda}=\frac{2}{\langle\lambda, \lambda+2 \rho\rangle-\langle\mu, \mu+2 \rho\rangle} \sum_{\alpha \in R^{+}} \sum_{i=1}^{2}\langle\mu+i \alpha, \alpha\rangle m_{\mu+i \alpha}^{\lambda} .
$$

3. Second alternative: Weyl character formula. The character of a finite-dimensional \mathfrak{g}-module V is

$$
\operatorname{ch}(V)=\sum_{\lambda \in P} \operatorname{dim}\left(V_{\lambda}\right) X^{\lambda}
$$

For irreducible modules, the character is given by

$$
\operatorname{ch}(L(\lambda))=\frac{a_{\lambda+\rho}}{a_{\rho}} \quad \text { where } \quad a_{\lambda+\rho}=\sum_{w \in W} \operatorname{det}(w) X^{w(\lambda+\rho)} .
$$

Working example

Fix $\mathfrak{g}=A_{2}$ with base $B=\left\{\beta_{1}, \beta_{2} \mid \beta_{i}=\varepsilon_{i}-\varepsilon_{i+1}\right\}$.
Calculate the multiplicities of the weights in $L(\lambda)$ when

$$
\lambda=\beta_{1}+\beta_{2}=\omega_{1}+\omega_{2}=\rho .
$$

We have now showed $m_{0}^{\lambda}=2$ in two ways.

Littelmann path model

Littelmann path model

Littelmann path model

Littelmann path model

Littelmann path model

Littelmann path model

Littelmann path model

Littelmann path model

Highest weight crystals

Since $\rho=\sum_{i} \omega_{i}$, the map

$$
\begin{gathered}
P^{++} \rightarrow P^{+} \\
C \cap P \rightarrow \bar{C} \cap P
\end{gathered} \quad \text { defined by } \quad \lambda \mapsto \lambda-\rho
$$

is a bijection.

Highest weight crystals

Since $\rho=\sum_{i} \omega_{i}$, the map

$$
\begin{gathered}
P^{++} \rightarrow P^{+} \\
C \cap P \rightarrow \bar{C} \cap P \quad \text { defined by } \quad \lambda \mapsto \lambda-\rho
\end{gathered}
$$

is a bijection.
A highest weight path is a path p satisfying

$$
e_{i} p=0 \quad \text { for all } i=1, \ldots, r,
$$

Highest weight crystals

Since $\rho=\sum_{i} \omega_{i}$, the map

$$
\begin{gathered}
P^{++} \rightarrow P^{+} \\
C \cap P \rightarrow \bar{C} \cap P \quad \text { defined by } \quad \lambda \mapsto \lambda-\rho
\end{gathered}
$$

is a bijection.
A highest weight path is a path p satisfying

$$
e_{i} p=0 \quad \text { for all } i=1, \ldots, r,
$$

which is the same as

$$
p(1) \in P^{+} \quad \text { and } \quad p(t) \in C-\rho \text { for all } t \in[0,1] .
$$

Highest weight crystals

Since $\rho=\sum_{i} \omega_{i}$, the map

$$
\begin{gathered}
P^{++} \rightarrow P^{+} \\
C \cap P \rightarrow \bar{C} \cap P \quad \text { defined by } \quad \lambda \mapsto \lambda-\rho
\end{gathered}
$$

is a bijection.
A highest weight path is a path p satisfying

$$
e_{i} p=0 \quad \text { for all } i=1, \ldots, r,
$$

which is the same as

$$
p(1) \in P^{+} \quad \text { and } \quad p(t) \in C-\rho \text { for all } t \in[0,1] .
$$

The weight of any path p is $\mathrm{wt}(p)=p(1)$.

Highest weight crystals

Since $\rho=\sum_{i} \omega_{i}$, the map

$$
\begin{gathered}
P^{++} \rightarrow P^{+} \\
C \cap P \rightarrow \bar{C} \cap P \quad \text { defined by } \quad \lambda \mapsto \lambda-\rho
\end{gathered}
$$

is a bijection.
A highest weight path is a path p satisfying

$$
e_{i} p=0 \quad \text { for all } i=1, \ldots, r,
$$

which is the same as

$$
p(1) \in P^{+} \quad \text { and } \quad p(t) \in C-\rho \text { for all } t \in[0,1] .
$$

The weight of any path p is $\mathrm{wt}(p)=p(1)$.
Proposition
Let p and p^{\prime} be highest weight paths of the same weight. Then the crystals generated p and p^{\prime} are isomorphic.

Back to characters

The character of a crystal is

$$
\operatorname{ch}(\mathcal{B})=\sum_{p \in \mathcal{B}} X^{\mathrm{wt}(p)}
$$

Back to characters

The character of a crystal is

$$
\operatorname{ch}(\mathcal{B})=\sum_{p \in \mathcal{B}} X^{\mathrm{wt}(p)}
$$

Theorem

$$
\text { For } \lambda \in P^{+}, \operatorname{ch}(\mathcal{B}(\lambda))=\operatorname{ch}(L(\lambda)) \text {. }
$$

Back to characters

The character of a crystal is

$$
\operatorname{ch}(\mathcal{B})=\sum_{p \in \mathcal{B}} X^{\mathrm{wt}(p)}
$$

Theorem
For $\lambda \in P^{+}, \operatorname{ch}(\mathcal{B}(\lambda))=\operatorname{ch}(L(\lambda))$.
Proposition
Let $\mathcal{B}, \mathcal{B}^{\prime}$ be finite crystals.

1. $\operatorname{ch}(\mathcal{B})=\operatorname{ch}\left(\mathcal{B}^{\prime}\right)$ if and only if $\mathcal{B} \cong \mathcal{B}^{\prime}$.

Back to characters

The character of a crystal is

$$
\operatorname{ch}(\mathcal{B})=\sum_{p \in \mathcal{B}} X^{\mathrm{wt}(p)}
$$

Theorem
For $\lambda \in P^{+}, \operatorname{ch}(\mathcal{B}(\lambda))=\operatorname{ch}(L(\lambda))$.
Proposition
Let $\mathcal{B}, \mathcal{B}^{\prime}$ be finite crystals.

1. $\operatorname{ch}(\mathcal{B})=\operatorname{ch}\left(\mathcal{B}^{\prime}\right)$ if and only if $\mathcal{B} \cong \mathcal{B}^{\prime}$.
2. The union $\mathcal{B} \sqcup \mathcal{B}^{\prime}$ is a crystal, and

$$
\operatorname{ch}\left(\mathcal{B} \sqcup \mathcal{B}^{\prime}\right)=\operatorname{ch}(\mathcal{B})+\operatorname{ch}\left(\mathcal{B}^{\prime}\right) .
$$

Back to characters

The character of a crystal is

$$
\operatorname{ch}(\mathcal{B})=\sum_{p \in \mathcal{B}} X^{\mathrm{wt}(p)}
$$

Theorem
For $\lambda \in P^{+}, \operatorname{ch}(\mathcal{B}(\lambda))=\operatorname{ch}(L(\lambda))$.
Proposition
Let $\mathcal{B}, \mathcal{B}^{\prime}$ be finite crystals.

1. $\operatorname{ch}(\mathcal{B})=\operatorname{ch}\left(\mathcal{B}^{\prime}\right)$ if and only if $\mathcal{B} \cong \mathcal{B}^{\prime}$.
2. The union $\mathcal{B} \sqcup \mathcal{B}^{\prime}$ is a crystal, and

$$
\operatorname{ch}\left(\mathcal{B} \sqcup \mathcal{B}^{\prime}\right)=\operatorname{ch}(\mathcal{B})+\operatorname{ch}\left(\mathcal{B}^{\prime}\right) .
$$

3. $\operatorname{ch}(\mathcal{B})=\sum_{\substack{p \in \mathcal{B} \\ p \text { is highest weight }}} \operatorname{ch}(\mathcal{B}(\operatorname{wt}(p)))$.

Tensor product rules

The concatenation of two paths p, p^{\prime} is defined by

$$
p p^{\prime}= \begin{cases}p(2 t) & 0 \leq t \leq 1 / 2 \\ p(1)+p^{\prime}(2(t-1 / 2)) & 1 / 2 \leq t \leq 1\end{cases}
$$

Note that $\mathrm{wt}\left(p p^{\prime}\right)=\mathrm{wt}(p)+\mathrm{wt}\left(p^{\prime}\right)$.

Tensor product rules

The concatenation of two paths p, p^{\prime} is defined by

$$
p p^{\prime}= \begin{cases}p(2 t) & 0 \leq t \leq 1 / 2 \\ p(1)+p^{\prime}(2(t-1 / 2)) & 1 / 2 \leq t \leq 1\end{cases}
$$

Note that $\mathrm{wt}\left(p p^{\prime}\right)=\mathrm{wt}(p)+\mathrm{wt}\left(p^{\prime}\right)$.
Theorem

1. For finite-dimensional \mathfrak{g}-modules V, V^{\prime},

$$
\mathcal{B}\left(V \otimes V^{\prime}\right)=\left\{p p^{\prime} \mid p \in \mathcal{B}(V), p^{\prime} \in \mathcal{B}\left(V^{\prime}\right)\right\} .
$$

Tensor product rules

The concatenation of two paths p, p^{\prime} is defined by

$$
p p^{\prime}= \begin{cases}p(2 t) & 0 \leq t \leq 1 / 2 \\ p(1)+p^{\prime}(2(t-1 / 2)) & 1 / 2 \leq t \leq 1\end{cases}
$$

Note that $\mathrm{wt}\left(p p^{\prime}\right)=\mathrm{wt}(p)+\mathrm{wt}\left(p^{\prime}\right)$.
Theorem

1. For finite-dimensional \mathfrak{g}-modules V, V^{\prime},

$$
\mathcal{B}\left(V \otimes V^{\prime}\right)=\left\{p p^{\prime} \mid p \in \mathcal{B}(V), p^{\prime} \in \mathcal{B}\left(V^{\prime}\right)\right\} .
$$

2. With $\lambda, \mu \in P^{+}$, and p_{λ}^{+}highest weight in $\mathcal{B}(\lambda)$,

$$
\operatorname{ch}(L(\lambda) \otimes L(\mu))=\sum_{\substack{q \in \mathcal{B}(\mu) \\ p_{\lambda}^{+} q \text { highest weight }}} \operatorname{ch}(L(\lambda+\mathrm{wt}(q)))
$$

