
Math 128: Lecture 19

May 9, 2014



Last time:
We’re trying to calculate mλ

µ, the dimension of L(λ)µ in L(λ), with
λ ∈ P+ = Z≥0{ω1, . . . , ωr}.

1. Even though {y`11 · · · y`mv
+
λ } is a spanning set of weight vectors,

it’s not very helpful.

2. First alternative: Freudenthal’s multiplicity formula.

mλ
µ =

2

〈λ, λ+ 2ρ〉 − 〈µ, µ+ 2ρ〉
∑
α∈R+

∞∑
i=1

〈µ+ iα, α〉mλ
µ+iα.

3. Second alternative: Weyl character formula. The character of a
finite-dimensional g-module V is

ch(V ) =
∑
λ∈P

dim(Vλ)Xλ.

For irreducible modules, the character is given by

ch(L(λ)) =
aλ+ρ
aρ

where aλ+ρ =
∑
w∈W

det(w)Xw(λ+ρ).



Last time:
We’re trying to calculate mλ

µ, the dimension of L(λ)µ in L(λ), with
λ ∈ P+ = Z≥0{ω1, . . . , ωr}.

1. Even though {y`11 · · · y`mv
+
λ } is a spanning set of weight vectors,

it’s not very helpful.

2. First alternative: Freudenthal’s multiplicity formula.

mλ
µ =

2

〈λ, λ+ 2ρ〉 − 〈µ, µ+ 2ρ〉
∑
α∈R+

∞∑
i=1

〈µ+ iα, α〉mλ
µ+iα.

3. Second alternative: Weyl character formula. The character of a
finite-dimensional g-module V is

ch(V ) =
∑
λ∈P

dim(Vλ)Xλ.

For irreducible modules, the character is given by

ch(L(λ)) =
aλ+ρ
aρ

where aλ+ρ =
∑
w∈W

det(w)Xw(λ+ρ).



Last time:
We’re trying to calculate mλ

µ, the dimension of L(λ)µ in L(λ), with
λ ∈ P+ = Z≥0{ω1, . . . , ωr}.

1. Even though {y`11 · · · y`mv
+
λ } is a spanning set of weight vectors,

it’s not very helpful.

2. First alternative: Freudenthal’s multiplicity formula.

mλ
µ =

2

〈λ, λ+ 2ρ〉 − 〈µ, µ+ 2ρ〉
∑
α∈R+

∞∑
i=1

〈µ+ iα, α〉mλ
µ+iα.

3. Second alternative: Weyl character formula. The character of a
finite-dimensional g-module V is

ch(V ) =
∑
λ∈P

dim(Vλ)Xλ.

For irreducible modules, the character is given by

ch(L(λ)) =
aλ+ρ
aρ

where aλ+ρ =
∑
w∈W

det(w)Xw(λ+ρ).



Working example

Fix g = A2 with base B = {β1, β2 | βi = εi − εi+1}.
Calculate the multiplicities of the weights in L(λ) when

λ = β1 + β2 = ω1 + ω2 = ρ.

hα1

hα2hα3

We have now showed mλ
0 = 2 in two ways.
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Highest weight crystals
Since ρ =

∑
i ωi, the map

P++ → P+

C ∩ P → C̄ ∩ P defined by λ 7→ λ− ρ

is a bijection.

hα1

hα2hα1+α2

A highest weight path is a path p satisfying

eip = 0 for all i = 1, . . . , r,

which is the same as

p(1) ∈ P+ and p(t) ∈ C − ρ for all t ∈ [0, 1].

The weight of any path p is wt(p) = p(1).

Proposition

Let p and p′ be highest weight paths of the same weight.
Then the crystals generated p and p′ are isomorphic.
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Back to characters
The character of a crystal is

ch(B) =
∑
p∈B

Xwt(p).

Theorem
For λ ∈ P+, ch(B(λ)) = ch(L(λ)).

Proposition

Let B,B′ be finite crystals.

1. ch(B) = ch(B′) if and only if B ∼= B′.
2. The union B t B′ is a crystal, and

ch(B t B′) = ch(B) + ch(B′).

3. ch(B) =
∑
p∈B

p is highest weight

ch(B(wt(p))).
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Tensor product rules

The concatenation of two paths p, p′ is defined by

pp′ =

{
p(2t) 0 ≤ t ≤ 1/2,

p(1) + p′(2(t− 1/2)) 1/2 ≤ t ≤ 1.

Note that wt(pp′) = wt(p) + wt(p′).

Theorem

1. For finite-dimensional g-modules V, V ′,

B(V ⊗ V ′) = {pp′ | p ∈ B(V ), p′ ∈ B(V ′)}.

2. With λ, µ ∈ P+, and p+λ highest weight in B(λ),

ch(L(λ)⊗ L(µ)) =
∑
q∈B(µ)

p+
λ
q highest weight

ch(L(λ+ wt(q))).
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