Math 128: Lecture 18

May 7, 2014

Last time:

We're trying to calculate $m_{\mu}^{\lambda},$ the dimension of $L(\lambda)_{\mu}$ in $L(\lambda),$ with $\lambda\in P^{+}.$

- 1. Even though $\{y_1^{\ell_1}\cdots y^{\ell_m}v_\lambda^+\}$ is a spanning set of weight vectors, it's not very helpful.
- 2. First alternative: Freudenthal's multiplicity formula.

$$m_{\mu}^{\lambda} = \frac{2}{\langle \lambda, \lambda + 2\rho \rangle - \langle \mu, \mu + 2\rho \rangle} \sum_{\alpha \in R^{+}} \sum_{i=1}^{\infty} \langle \mu + i\alpha, \alpha \rangle m_{\mu+i\alpha}^{\lambda}.$$

Example: Fix $\mathfrak{g} = A_2$, $B = \{\beta_1, \beta_2 \mid \beta_i = \varepsilon_i - \varepsilon_{i+1}\}$, and $\lambda = \beta_1 + \beta_2 = \omega_1 + \omega_2 = \rho$.

We verified that $m_{\beta_1}^{\lambda} = 1$ and showed $m_0 = 2$.

Recall, with the fundamental weights $\Omega = \{\omega_i \mid i=1,\ldots,r\}$ dual to B^\vee ,

$$P = \mathbb{Z}\{\omega_1, \dots, \omega_r\}, \quad P^+ = \mathbb{Z}_{\geq 0}\{\omega_1, \dots, \omega_r\},$$

and
$$P^{++} = \mathbb{Z}_{>0}\{\omega_1, \dots, \omega_r\}.$$

Recall, with the fundamental weights $\Omega = \{\omega_i \mid i = 1, \ldots, r\}$ dual to B^{\vee} ,

$$P = \mathbb{Z}\{\omega_1, \dots, \omega_r\}, \quad P^+ = \mathbb{Z}_{\geq 0}\{\omega_1, \dots, \omega_r\},$$

and
$$P^{++} = \mathbb{Z}_{>0}\{\omega_1, \dots, \omega_r\}.$$

Formally define the algebra

$$\mathbb{C}[X] = \mathbb{C}\{X^{\lambda} \mid \lambda \in P\} \qquad \text{with} \quad X^{\lambda}X^{\mu} = X^{\lambda+\mu}.$$

Recall, with the fundamental weights $\Omega = \{\omega_i \mid i = 1, \dots, r\}$ dual to B^{\vee} ,

$$P = \mathbb{Z}\{\omega_1, \dots, \omega_r\}, \quad P^+ = \mathbb{Z}_{\geq 0}\{\omega_1, \dots, \omega_r\},$$

and
$$P^{++} = \mathbb{Z}_{>0}\{\omega_1, \dots, \omega_r\}.$$

Formally define the algebra

$$\mathbb{C}[X] = \mathbb{C}\{X^{\lambda} \mid \lambda \in P\} \qquad \text{with} \quad X^{\lambda}X^{\mu} = X^{\lambda+\mu}.$$

Let V be a finite-dimensional g-module. The *character* associated to V is the element of $\mathbb{C}[X]$ given by

$$\operatorname{ch}(V) = \sum_{\lambda \in P} \dim(V_{\lambda}) X^{\lambda}$$

Recall, with the fundamental weights $\Omega = \{\omega_i \mid i = 1, \ldots, r\}$ dual to B^{\vee} ,

$$P = \mathbb{Z}\{\omega_1, \dots, \omega_r\}, \quad P^+ = \mathbb{Z}_{\geq 0}\{\omega_1, \dots, \omega_r\},$$

and
$$P^{++} = \mathbb{Z}_{>0}\{\omega_1, \dots, \omega_r\}.$$

Formally define the algebra

$$\mathbb{C}[X] = \mathbb{C}\{X^{\lambda} \mid \lambda \in P\} \qquad \text{with} \quad X^{\lambda}X^{\mu} = X^{\lambda+\mu}.$$

Let V be a finite-dimensional g-module. The *character* associated to V is the element of $\mathbb{C}[X]$ given by

$$\operatorname{ch}(V) = \sum_{\lambda \in P} \dim(V_{\lambda}) X^{\lambda}$$

Example: For $\mathfrak{g} = \mathfrak{sl}_3$,

$$ch(L(\beta_1 + \beta_2)) = X^{\beta_1 + \beta_2} + X^{\beta_2} + X^{-\beta_1} + X^{-(\beta_1 + \beta_2)} + X^{-\beta_2} + X^{\beta_1} + 2X^0.$$

W acts on P by $s_{\alpha} : \lambda \mapsto \lambda - \langle \lambda, \alpha^{\vee} \rangle \alpha$. This action extends to an action on $\mathbb{C}[X]$ given by

$$wX^{\lambda} = X^{w\lambda}.$$

W acts on P by $s_{\alpha} : \lambda \mapsto \lambda - \langle \lambda, \alpha^{\vee} \rangle \alpha$. This action extends to an action on $\mathbb{C}[X]$ given by

$$wX^{\lambda} = X^{w\lambda}.$$

Proposition

Let V, V' be finite-dimensional g-modules.

(1) The character ch(V) is symmetric with respect to the action of W, so

$$ch(V) \in \mathbb{C}[X]^W = \{ f \in \mathbb{C}[X] \mid wf = f \}.$$

(2) One has

 $\operatorname{ch}(V \oplus V') = \operatorname{ch}(V) + \operatorname{ch}(V')$ and $\operatorname{ch}(V \otimes V') = \operatorname{ch}(V) \operatorname{ch}(V')$

(3) The modules V and V' are isomorphic if and only if ch(V) = ch(V'). Calculating $ch(L(\lambda))$

Recall
$$\rho = \frac{1}{2} \sum_{\alpha \in R^+} \alpha = \sum_{i=1}^r \omega_i$$
 and $\det(w) = (-1)^{\ell(w)}$. Define

$$a_{\lambda+\rho} = \sum_{w \in W} \det(w) X^{w(\lambda+\rho)}.$$

Calculating $ch(L(\lambda))$

Recall
$$\rho = \frac{1}{2} \sum_{\alpha \in R^+} \alpha = \sum_{i=1}^r \omega_i$$
 and $\det(w) = (-1)^{\ell(w)}$.
Define
$$a_{\lambda+\rho} = \sum_{w \in W} \det(w) X^{w(\lambda+\rho)}.$$

Theorem (Weyl character formula)

1. (Weyl character formula) With $\lambda \in P^+$,

$$\operatorname{ch}(L(\lambda)) = \frac{a_{\lambda+\rho}}{a_{\rho}}.$$

Calculating $ch(L(\lambda))$

Recall
$$\rho = \frac{1}{2} \sum_{\alpha \in R^+} \alpha = \sum_{i=1}^r \omega_i$$
 and $\det(w) = (-1)^{\ell(w)}$.
Define
 $a_{\lambda+\rho} = \sum_{w \in W} \det(w) X^{w(\lambda+\rho)}$.

Theorem (Weyl character formula)

1. (Weyl character formula) With $\lambda \in P^+$,

$$\operatorname{ch}(L(\lambda)) = \frac{a_{\lambda+\rho}}{a_{\rho}}$$

2. (Weyl denominator formula)

$$a_{\rho} = \prod_{\alpha \in R^+} (X^{\frac{1}{2}\alpha} - X^{-\frac{1}{2}\alpha}).$$

Recall, for
$$\mathfrak{g} = A_r$$
,

$$P^{+} = \mathbb{Z}_{\geq 0}\Omega = \{\lambda_{1}\varepsilon_{1} + \dots + \lambda_{r}\varepsilon_{r} - \frac{|\lambda|}{r+1}\varepsilon_{1} + \dots + \varepsilon_{r+1} \mid **\}$$

where

$$** = \left\{ \begin{aligned} \lambda_i \in \mathbb{Z}_{\geq 0}, & |\lambda| = \lambda_1 + \dots + \lambda_r \\ \lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_r \geq 0 \end{aligned} \right\}.$$

Recall, for
$$\mathfrak{g} = A_r$$
,

$$P^{+} = \mathbb{Z}_{\geq 0}\Omega = \{\lambda_{1}\varepsilon_{1} + \dots + \lambda_{r}\varepsilon_{r} - \frac{|\lambda|}{r+1}\varepsilon_{1} + \dots + \varepsilon_{r+1} \mid **\}$$

where

$$** = \left\{ \begin{aligned} \lambda_i \in \mathbb{Z}_{\geq 0}, & |\lambda| = \lambda_1 + \dots + \lambda_r \\ \lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_r \geq 0 \end{aligned} \right\}.$$

So P^+ is in bijection with integer partitions of length less than or equal to r:

The weight of a partition the collection of integers with

 λ_1 1's, λ_2 2's, \cdots , λ_r r's.

1	1	1	1	1
2	2	2	2	
3	3	3	3	
4	4			
5				

The weight of a composition the collection of integers with

 λ_1 1's, λ_2 2's, \cdots , λ_r r's.

A *composition* is a partition without the condition that $\lambda_i \geq \lambda_{i+1}$.

The weight of a composition the collection of integers with

 λ_1 1's, λ_2 2's, \cdots , λ_r r's.

A composition is a partition without the condition that $\lambda_i \geq \lambda_{i+1}$. Let λ be a partition and μ a composition with $|\lambda| = |\mu|$. A semistandard tableau or filling of shape λ and weight μ is a filling of the boxes in λ with the integers in $wt(\mu)$ such that rows weakly increase and columns strictly increase.

Let λ be a partition and (abusing notation) let $L(\lambda)$ be the corresponding module.

Let λ be a partition and (abusing notation) let $L(\lambda)$ be the corresponding module.

The weights in P_{λ} can all be expressed as compositions of $|\lambda|$ of length $\leq r+1.$

Let λ be a partition and (abusing notation) let $L(\lambda)$ be the corresponding module.

The weights in P_{λ} can all be expressed as compositions of $|\lambda|$ of length $\leq r+1.$

The dimension of the weight space (corresponding to composition μ) is equal to the number semistandard fillings of λ with weight μ .

Let λ be a partition and (abusing notation) let $L(\lambda)$ be the corresponding module.

The weights in P_{λ} can all be expressed as compositions of $|\lambda|$ of length $\leq r+1.$

The dimension of the weight space (corresponding to composition μ) is equal to the number semistandard fillings of λ with weight μ .

Connection to symmetric functions land: Let

$$x_i = X^{\varepsilon_i - \frac{1}{r+1}(\varepsilon_1 + \dots + \varepsilon_{r+1})}, \qquad i = 1, \dots, r+1.$$