Math 128: Lecture 18

May 7, 2014

Last time:

We're trying to calculate m_{μ}^{λ}, the dimension of $L(\lambda)_{\mu}$ in $L(\lambda)$, with $\lambda \in P^{+}$.

1. Even though $\left\{y_{1}^{\ell_{1}} \cdots y^{\ell_{m}} v_{\lambda}^{+}\right\}$is a spanning set of weight vectors, it's not very helpful.
2. First alternative: Freudenthal's multiplicity formula.

$$
m_{\mu}^{\lambda}=\frac{2}{\langle\lambda, \lambda+2 \rho\rangle-\langle\mu, \mu+2 \rho\rangle} \sum_{\alpha \in R^{+}} \sum_{i=1}^{\infty}\langle\mu+i \alpha, \alpha\rangle m_{\mu+i \alpha}^{\lambda} .
$$

Example: Fix $\mathfrak{g}=A_{2}, B=\left\{\beta_{1}, \beta_{2} \mid \beta_{i}=\varepsilon_{i}-\varepsilon_{i+1}\right\}$, and $\lambda=\beta_{1}+\beta_{2}=\omega_{1}+\omega_{2}=\rho$.

We verified that $m_{\beta_{1}}^{\lambda}=1$ and showed $m_{0}=2$.

Characters

Recall, with the fundamental weights $\Omega=\left\{\omega_{i} \mid i=1, \ldots, r\right\}$ dual to B^{\vee},

$$
\begin{gathered}
P=\mathbb{Z}\left\{\omega_{1}, \ldots, \omega_{r}\right\}, \quad P^{+}=\mathbb{Z}_{\geq 0}\left\{\omega_{1}, \ldots, \omega_{r}\right\} \\
\text { and } \quad P^{++}=\mathbb{Z}_{>0}\left\{\omega_{1}, \ldots, \omega_{r}\right\} .
\end{gathered}
$$

Characters

Recall, with the fundamental weights $\Omega=\left\{\omega_{i} \mid i=1, \ldots, r\right\}$ dual to B^{\vee},

$$
\begin{gathered}
P=\mathbb{Z}\left\{\omega_{1}, \ldots, \omega_{r}\right\}, \quad P^{+}=\mathbb{Z}_{\geq 0}\left\{\omega_{1}, \ldots, \omega_{r}\right\} \\
\text { and } \quad P^{++}=\mathbb{Z}_{>0}\left\{\omega_{1}, \ldots, \omega_{r}\right\} .
\end{gathered}
$$

Formally define the algebra

$$
\mathbb{C}[X]=\mathbb{C}\left\{X^{\lambda} \mid \lambda \in P\right\} \quad \text { with } \quad X^{\lambda} X^{\mu}=X^{\lambda+\mu}
$$

Characters

Recall, with the fundamental weights $\Omega=\left\{\omega_{i} \mid i=1, \ldots, r\right\}$ dual to B^{\vee},

$$
\begin{gathered}
P=\mathbb{Z}\left\{\omega_{1}, \ldots, \omega_{r}\right\}, \quad P^{+}=\mathbb{Z}_{\geq 0}\left\{\omega_{1}, \ldots, \omega_{r}\right\} \\
\text { and } \quad P^{++}=\mathbb{Z}_{>0}\left\{\omega_{1}, \ldots, \omega_{r}\right\} .
\end{gathered}
$$

Formally define the algebra

$$
\mathbb{C}[X]=\mathbb{C}\left\{X^{\lambda} \mid \lambda \in P\right\} \quad \text { with } \quad X^{\lambda} X^{\mu}=X^{\lambda+\mu}
$$

Let V be a finite-dimensional \mathfrak{g}-module. The character associated to V is the element of $\mathbb{C}[X]$ given by

$$
\operatorname{ch}(V)=\sum_{\lambda \in P} \operatorname{dim}\left(V_{\lambda}\right) X^{\lambda}
$$

Characters

Recall, with the fundamental weights $\Omega=\left\{\omega_{i} \mid i=1, \ldots, r\right\}$ dual to B^{\vee},

$$
\begin{gathered}
P=\mathbb{Z}\left\{\omega_{1}, \ldots, \omega_{r}\right\}, \quad P^{+}=\mathbb{Z}_{\geq 0}\left\{\omega_{1}, \ldots, \omega_{r}\right\} \\
\text { and } \quad P^{++}=\mathbb{Z}_{>0}\left\{\omega_{1}, \ldots, \omega_{r}\right\} .
\end{gathered}
$$

Formally define the algebra

$$
\mathbb{C}[X]=\mathbb{C}\left\{X^{\lambda} \mid \lambda \in P\right\} \quad \text { with } \quad X^{\lambda} X^{\mu}=X^{\lambda+\mu}
$$

Let V be a finite-dimensional \mathfrak{g}-module. The character associated to V is the element of $\mathbb{C}[X]$ given by

$$
\operatorname{ch}(V)=\sum_{\lambda \in P} \operatorname{dim}\left(V_{\lambda}\right) X^{\lambda}
$$

Example: For $\mathfrak{g}=\mathfrak{s l}_{3}$,

$$
\begin{aligned}
\operatorname{ch}\left(L\left(\beta_{1}+\beta_{2}\right)\right)= & X^{\beta_{1}+\beta_{2}}+X^{\beta_{2}}+X^{-\beta_{1}} \\
& +X^{-\left(\beta_{1}+\beta_{2}\right)}+X^{-\beta_{2}}+X^{\beta_{1}}+2 X^{0}
\end{aligned}
$$

Characters

W acts on P by $s_{\alpha}: \lambda \mapsto \lambda-\left\langle\lambda, \alpha^{\vee}\right\rangle \alpha$.
This action extends to an action on $\mathbb{C}[X]$ given by

$$
w X^{\lambda}=X^{w \lambda} .
$$

Characters

W acts on P by $s_{\alpha}: \lambda \mapsto \lambda-\left\langle\lambda, \alpha^{\vee}\right\rangle \alpha$.
This action extends to an action on $\mathbb{C}[X]$ given by

$$
w X^{\lambda}=X^{w \lambda}
$$

Proposition

Let V, V^{\prime} be finite-dimensional \mathfrak{g}-modules.
(1) The character $\operatorname{ch}(V)$ is symmetric with respect to the action of W, so

$$
\operatorname{ch}(V) \in \mathbb{C}[X]^{W}=\{f \in \mathbb{C}[X] \mid w f=f\}
$$

(2) One has

$$
\operatorname{ch}\left(V \oplus V^{\prime}\right)=\operatorname{ch}(V)+\operatorname{ch}\left(V^{\prime}\right) \quad \text { and } \quad \operatorname{ch}\left(V \otimes V^{\prime}\right)=\operatorname{ch}(V) \operatorname{ch}\left(V^{\prime}\right)
$$

(3) The modules V and V^{\prime} are isomorphic if and only if $\operatorname{ch}(V)=\operatorname{ch}\left(V^{\prime}\right)$.

Calculating $\operatorname{ch}(L(\lambda))$

Recall $\rho=\frac{1}{2} \sum_{\alpha \in R^{+}} \alpha=\sum_{i=1}^{r} \omega_{i}$ and $\operatorname{det}(w)=(-1)^{\ell(w)}$.
Define

$$
a_{\lambda+\rho}=\sum_{w \in W} \operatorname{det}(w) X^{w(\lambda+\rho)}
$$

Calculating $\operatorname{ch}(L(\lambda))$

Recall $\rho=\frac{1}{2} \sum_{\alpha \in R^{+}} \alpha=\sum_{i=1}^{r} \omega_{i}$ and $\operatorname{det}(w)=(-1)^{\ell(w)}$. Define

$$
a_{\lambda+\rho}=\sum_{w \in W} \operatorname{det}(w) X^{w(\lambda+\rho)} .
$$

Theorem (Weyl character formula)

1. (Weyl character formula) With $\lambda \in P^{+}$,

$$
\operatorname{ch}(L(\lambda))=\frac{a_{\lambda+\rho}}{a_{\rho}} .
$$

Calculating $\operatorname{ch}(L(\lambda))$

Recall $\rho=\frac{1}{2} \sum_{\alpha \in R^{+}} \alpha=\sum_{i=1}^{r} \omega_{i}$ and $\operatorname{det}(w)=(-1)^{\ell(w)}$. Define

$$
a_{\lambda+\rho}=\sum_{w \in W} \operatorname{det}(w) X^{w(\lambda+\rho)} .
$$

Theorem (Weyl character formula)

1. (Weyl character formula) With $\lambda \in P^{+}$,

$$
\operatorname{ch}(L(\lambda))=\frac{a_{\lambda+\rho}}{a_{\rho}} .
$$

2. (Weyl denominator formula)

$$
a_{\rho}=\prod_{\alpha \in R^{+}}\left(X^{\frac{1}{2} \alpha}-X^{-\frac{1}{2} \alpha}\right) .
$$

Tricks for type A_{r}

Recall, for $\mathfrak{g}=A_{r}$,

$$
P^{+}=\mathbb{Z}_{\geq 0} \Omega=\left\{\left.\lambda_{1} \varepsilon_{1}+\cdots+\lambda_{r} \varepsilon_{r}-\frac{|\lambda|}{r+1} \varepsilon_{1}+\cdots+\varepsilon_{r+1} \right\rvert\, * *\right\}
$$

where

$$
* *=\left\{\begin{array}{c}
\lambda_{i} \in \mathbb{Z}_{\geq 0}, \quad|\lambda|=\lambda_{1}+\cdots+\lambda_{r} \\
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{r} \geq 0
\end{array}\right\} .
$$

Tricks for type A_{r}

Recall, for $\mathfrak{g}=A_{r}$,

$$
P^{+}=\mathbb{Z}_{\geq 0} \Omega=\left\{\left.\lambda_{1} \varepsilon_{1}+\cdots+\lambda_{r} \varepsilon_{r}-\frac{|\lambda|}{r+1} \varepsilon_{1}+\cdots+\varepsilon_{r+1} \right\rvert\, * *\right\}
$$

where

$$
* *=\left\{\begin{array}{c}
\lambda_{i} \in \mathbb{Z}_{\geq 0}, \quad|\lambda|=\lambda_{1}+\cdots+\lambda_{r} \\
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{r} \geq 0
\end{array}\right\} .
$$

So P^{+}is in bijection with integer partitions of length less than or equal to r :

Tricks for type A_{r}

The weight of a partition the collection of integers with

$$
\lambda_{1} \text { 1's, } \quad \lambda_{2} \text { 2's }, \cdots, \lambda_{r} \text { r's. }
$$

1	1	1	1	1
2	2	2	2	
3	3	3	3	
4	4			
5				

Tricks for type A_{r}

The weight of a composition the collection of integers with

$$
\lambda_{1} \text { 1's, } \quad \lambda_{2} \text { 2's }, \cdots, \lambda_{r} \text { r's. }
$$

A composition is a partition without the condition that $\lambda_{i} \geq \lambda_{i+1}$.

Tricks for type A_{r}

The weight of a composition the collection of integers with

$$
\lambda_{1} \text { 1's, } \quad \lambda_{2} \text { 2's }, \cdots, \lambda_{r} \text { r's. }
$$

1	1	1	1	1	1				
2	2	2	2		2	2	2	2	
3	3	3	3		3	3	3	3	3
4	4				4	4			
5									
					6	6	6	6	

A composition is a partition without the condition that $\lambda_{i} \geq \lambda_{i+1}$.
Let λ be a partition and μ a composition with $|\lambda|=|\mu|$.
A semistandard tableau or filling of shape λ and weight μ is a filling of the boxes in λ with the integers in $\mathrm{wt}(\mu)$ such that rows weakly increase and columns strictly increase.

Tricks for type A_{r}

Let λ be a partition and (abusing notation) let $L(\lambda)$ be the corresponding module.

Tricks for type A_{r}

Let λ be a partition and (abusing notation) let $L(\lambda)$ be the corresponding module.

The weights in P_{λ} can all be expressed as compositions of $|\lambda|$ of length $\leq r+1$.

Tricks for type A_{r}

Let λ be a partition and (abusing notation) let $L(\lambda)$ be the corresponding module.

The weights in P_{λ} can all be expressed as compositions of $|\lambda|$ of length $\leq r+1$.

The dimension of the weight space (corresponding to composition μ) is equal to the number semistandard fillings of λ with weight μ.

Tricks for type A_{r}

Let λ be a partition and (abusing notation) let $L(\lambda)$ be the corresponding module.

The weights in P_{λ} can all be expressed as compositions of $|\lambda|$ of length $\leq r+1$.

The dimension of the weight space (corresponding to composition μ) is equal to the number semistandard fillings of λ with weight μ.

Connection to symmetric functions land:
Let

$$
x_{i}=X^{\varepsilon_{i}-\frac{1}{r+1}\left(\varepsilon_{1}+\cdots+\varepsilon_{r+1}\right)}, \quad i=1, \ldots, r+1 .
$$

