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Last time:
Fix a base B = {βi, . . . , βr} and a fund. chamber C = {λ ∈ h∗R | 〈λ, βi〉 > 0}.
Let si = sβi and ρ = 1

2

∑
α∈R+ α.

We saw siρ = ρ− βi and ρ =
∑r
i=1 ωi ∈ P

++.

Theorem

1. W acts transitively on Weyl chambers.

2. Fix a base B. For all α ∈ R there is some w ∈W with
w(α) ∈ B.

3. For any base B, W is generated by simple reflections
(reflections associated to simple roots).
We showed for all α ∈ R, we have sα = wsβw

−1 with β ∈ B,w ∈ 〈sγ | γ ∈ B〉

4. W acts simply transitively on bases B of R.



More on W
Fix a base B = {βi, . . . , βr} and a fund. chamber C = {λ ∈ h∗R | 〈λ, βi〉 > 0}.
Let si = sβi and ρ = 1

2

∑
α∈R+ α.

We saw siρ = ρ− βi and ρ =
∑r
i=1 ωi ∈ P

++.

Define the length of an element w ∈W , written `(w) as the length
of a minimal word in simple reflections generating w.

Other facts:

1. W has a unique longest word w0 which sends ρ to −ρ,
so that w0C is the unique Weyl chamber on the negative side
of all hyperplanes.

2. The map det :W → {±1} defined by

w 7→

{
1 if w is the product of an even number of reflections,

−1 if w is the product of an odd number of reflections,

is well-defined (and equal to (−1)`(w)). This is called the
alternating representation or sign representation of W , and is
sometimes also written as ε(w).
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Back to representation theory
Recall some things we know about representations of g:

1. For every λ ∈ h∗, there’s a highest weight representation

L(λ) = Ug⊗Ub v
+
λ where

xv+λ = 0 for all x ∈ U+ = Un+,
hv+λ = λ(h)v+λ for all h ∈ U0 = Uh.

2. With R+ = {α1, . . . , αm} and yi ∈ g−αi
, L(λ) is spanned by weight

vectors

y`11 · · · y`mm v+λ with weight λ−
m∑
i=1

`mαm.

3. L(λ) is finite-dimensional if and only if λ ∈ P+ =
∑r
i=1 ωi, where

ωi is determined by 〈ωi, β∨j 〉 = δij .

4. If L(λ) is finite-dimensional, then with mµ = dim(L(λ)µ), we have

mλ = 1, and mµ = mwµ for all w ∈W.

5. The set Pλ = {µ ∈ h∗ | dim(L(λ)µ) > 0} is the set of weights
congruent to λ modulo R within the convex hull of Wλ in h∗R.
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Example

Let g = A2 have base B = {β1, β2 | βi = εi − εi+1}, so that
R+ = {α1 = β1, α2 = β2, α3 = β1 + β2}.
With λ = α3, the set Pλ is the red points in

hα1

hα2hα3

33

3

3

2

3

2

1

3

1

22

1

2

11

1

so that Pα3 =Wα3 t {0} with Wα3 = R.

What is m0??
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Casimir element and Freudenthal’s multiplicity formula
If {bi} is a basis of g, then there is a unique dual basis {b∗i } of g
determined by 〈bi, b∗i 〉 = δij .The Casimir element is

κ =
∑
bi

bib
∗
i ∈ Ug

where the sum is over the basis {bi} and the dual basis {b∗i }.

Theorem
Let κ be the Casimir element of g.

1. κ does not depend on the choice of basis.

2. κ ∈ Z(Ug), the center of U(g).

Theorem (Freudenthal’s multiplicity formula)
Let mµ be the dimension of L(λ)µ in L(λ), with λ ∈ P+. Then mµ is
determined recursively by

mµ =
2

〈λ, λ+ 2ρ〉 − 〈µ, µ+ 2ρ〉
∑
α∈R+

∞∑
i=1

〈µ+ iα, α〉mµ+iα.
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