Math 128: Lecture 17

May 5, 2014

Last time:

Fix a base $B = \{\beta_i, \dots, \beta_r\}$ and a fund. chamber $C = \{\lambda \in \mathfrak{h}^*_{\mathbb{R}} \mid \langle \lambda, \beta_i \rangle > 0\}$. Let $s_i = s_{\beta_i}$ and $\rho = \frac{1}{2} \sum_{\alpha \in R^+} \alpha$. We saw $s_i \rho = \rho - \beta_i$ and $\rho = \sum_{i=1}^r \omega_i \in P^{++}$.

Theorem

- 1. W acts transitively on Weyl chambers.
- 2. Fix a base B. For all $\alpha \in R$ there is some $w \in W$ with $w(\alpha) \in B$.
- 3. For any base *B*, *W* is generated by simple reflections (reflections associated to simple roots).

We showed for all $\alpha \in R$, we have $s_{\alpha} = ws_{\beta}w^{-1}$ with $\beta \in B, w \in \langle s_{\gamma} \mid \gamma \in B \rangle$

4. W acts simply transitively on bases B of R.

More on W

Fix a base $B = \{\beta_i, \dots, \beta_r\}$ and a fund. chamber $C = \{\lambda \in \mathfrak{h}^*_{\mathbb{R}} \mid \langle \lambda, \beta_i \rangle > 0\}$. Let $s_i = s_{\beta_i}$ and $\rho = \frac{1}{2} \sum_{\alpha \in R^+} \alpha$. We saw $s_i \rho = \rho - \beta_i$ and $\rho = \sum_{i=1}^r \omega_i \in P^{++}$.

Define the *length* of an element $w \in W$, written $\ell(w)$ as the length of a minimal word in simple reflections generating w.

More on W

Fix a base $B = \{\beta_i, \dots, \beta_r\}$ and a fund. chamber $C = \{\lambda \in \mathfrak{h}_{\mathbb{R}}^* \mid \langle \lambda, \beta_i \rangle > 0\}$. Let $s_i = s_{\beta_i}$ and $\rho = \frac{1}{2} \sum_{\alpha \in R^+} \alpha$. We saw $s_i \rho = \rho - \beta_i$ and $\rho = \sum_{i=1}^r \omega_i \in P^{++}$.

Define the *length* of an element $w \in W$, written $\ell(w)$ as the length of a minimal word in simple reflections generating w. Other facts:

1. W has a unique longest word w_0 which sends ρ to $-\rho$, so that w_0C is the unique Weyl chamber on the negative side of all hyperplanes.

More on W

Fix a base $B = \{\beta_i, \dots, \beta_r\}$ and a fund. chamber $C = \{\lambda \in \mathfrak{h}^*_{\mathbb{R}} \mid \langle \lambda, \beta_i \rangle > 0\}$. Let $s_i = s_{\beta_i}$ and $\rho = \frac{1}{2} \sum_{\alpha \in R^+} \alpha$. We saw $s_i \rho = \rho - \beta_i$ and $\rho = \sum_{i=1}^r \omega_i \in P^{++}$.

Define the *length* of an element $w \in W$, written $\ell(w)$ as the length of a minimal word in simple reflections generating w. Other facts:

- 1. W has a unique longest word w_0 which sends ρ to $-\rho$, so that w_0C is the unique Weyl chamber on the negative side of all hyperplanes.
- 2. The map $det: W \to {\pm 1}$ defined by

 $w \mapsto \begin{cases} 1 & \text{if } w \text{ is the product of an even number of reflections,} \\ -1 & \text{if } w \text{ is the product of an odd number of reflections,} \end{cases}$

is well-defined (and equal to $(-1)^{\ell(w)}$). This is called the *alternating representation* or *sign representation* of W, and is sometimes also written as $\varepsilon(w)$.

Recall some things we know about representations of \mathfrak{g} :

1. For every $\lambda \in \mathfrak{h}^*$, there's a highest weight representation

$$L(\lambda) = U\mathfrak{g} \otimes_{U\mathfrak{b}} v_{\lambda}^{+} \quad \text{where} \qquad \begin{array}{l} xv_{\lambda}^{+} = 0 & \text{ for all } x \in U^{+} = U\mathfrak{n}^{+}, \\ hv_{\lambda}^{+} = \lambda(h)v_{\lambda}^{+} & \text{ for all } h \in U^{0} = U\mathfrak{h}. \end{array}$$

Recall some things we know about representations of \mathfrak{g} :

1. For every $\lambda \in \mathfrak{h}^*$, there's a highest weight representation

$$L(\lambda) = U\mathfrak{g} \otimes_{U\mathfrak{b}} v_{\lambda}^{+} \quad \text{where} \quad \begin{array}{l} xv_{\lambda}^{+} = 0 & \text{ for all } x \in U^{+} = U\mathfrak{n}^{+}, \\ hv_{\lambda}^{+} = \lambda(h)v_{\lambda}^{+} & \text{ for all } h \in U^{0} = U\mathfrak{h}. \end{array}$$

2. With $R^+ = \{\alpha_1, \ldots, \alpha_m\}$ and $y_i \in \mathfrak{g}_{-\alpha_i}$, $L(\lambda)$ is spanned by weight vectors

$$y_1^{\ell_1} \cdots y_m^{\ell_m} v_\lambda^+$$
 with weight $\lambda - \sum_{i=1}^m \ell_m \alpha_m$.

Recall some things we know about representations of g:

1. For every $\lambda \in \mathfrak{h}^*$, there's a highest weight representation

$$L(\lambda) = U\mathfrak{g} \otimes_{U\mathfrak{b}} v_{\lambda}^{+} \quad \text{where} \quad \begin{array}{l} xv_{\lambda}^{+} = 0 & \text{ for all } x \in U^{+} = U\mathfrak{n}^{+}, \\ hv_{\lambda}^{+} = \lambda(h)v_{\lambda}^{+} & \text{ for all } h \in U^{0} = U\mathfrak{h}. \end{array}$$

2. With $R^+ = \{\alpha_1, \dots, \alpha_m\}$ and $y_i \in \mathfrak{g}_{-\alpha_i}$, $L(\lambda)$ is spanned by weight vectors

$$y_1^{\ell_1} \cdots y_m^{\ell_m} v_\lambda^+$$
 with weight $\lambda - \sum_{i=1}^m \ell_m \alpha_m$.

3. $L(\lambda)$ is finite-dimensional if and only if $\lambda \in P^+ = \sum_{i=1}^r \omega_i$, where

 ω_i is determined by $\langle \omega_i, \beta_j^{\vee} \rangle = \delta_{ij}$.

Recall some things we know about representations of g:

1. For every $\lambda \in \mathfrak{h}^*$, there's a highest weight representation

$$L(\lambda) = U\mathfrak{g} \otimes_{U\mathfrak{b}} v_{\lambda}^{+} \quad \text{where} \quad \begin{array}{l} xv_{\lambda}^{+} = 0 & \text{ for all } x \in U^{+} = U\mathfrak{n}^{+}, \\ hv_{\lambda}^{+} = \lambda(h)v_{\lambda}^{+} & \text{ for all } h \in U^{0} = U\mathfrak{h}. \end{array}$$

2. With $R^+ = \{\alpha_1, \ldots, \alpha_m\}$ and $y_i \in \mathfrak{g}_{-\alpha_i}$, $L(\lambda)$ is spanned by weight vectors

$$y_1^{\ell_1} \cdots y_m^{\ell_m} v_\lambda^+$$
 with weight $\lambda - \sum_{i=1}^m \ell_m \alpha_m$.

3. $L(\lambda)$ is finite-dimensional if and only if $\lambda \in P^+ = \sum_{i=1}^r \omega_i$, where ω_i is determined by $\langle \omega_i, \beta_j^{\vee} \rangle = \delta_{ij}$.

4. If $L(\lambda)$ is finite-dimensional, then with $m_\mu = \dim(L(\lambda)_\mu)$, we have

$$m_{\lambda} = 1$$
, and $m_{\mu} = m_{w\mu}$ for all $w \in W$.

Recall some things we know about representations of g:

1. For every $\lambda \in \mathfrak{h}^*$, there's a highest weight representation

$$L(\lambda) = U\mathfrak{g} \otimes_{U\mathfrak{b}} v_{\lambda}^{+} \quad \text{where} \quad \begin{array}{l} xv_{\lambda}^{+} = 0 & \text{ for all } x \in U^{+} = U\mathfrak{n}^{+}, \\ hv_{\lambda}^{+} = \lambda(h)v_{\lambda}^{+} & \text{ for all } h \in U^{0} = U\mathfrak{h}. \end{array}$$

2. With $R^+ = \{\alpha_1, \dots, \alpha_m\}$ and $y_i \in \mathfrak{g}_{-\alpha_i}$, $L(\lambda)$ is spanned by weight vectors

$$y_1^{\ell_1} \cdots y_m^{\ell_m} v_\lambda^+$$
 with weight $\lambda - \sum_{i=1}^m \ell_m \alpha_m$.

3. $L(\lambda)$ is finite-dimensional if and only if $\lambda \in P^+ = \sum_{i=1}^r \omega_i$, where ω_i is determined by $\langle \omega_i, \beta_j^{\vee} \rangle = \delta_{ij}$.

4. If $L(\lambda)$ is finite-dimensional, then with $m_{\mu} = \dim(L(\lambda)_{\mu})$, we have

$$m_{\lambda}=1,$$
 and $m_{\mu}=m_{w\mu}$ for all $w\in W.$

5. The set $P_{\lambda} = \{ \mu \in \mathfrak{h}^* \mid \dim(L(\lambda)_{\mu}) > 0 \}$ is the set of weights congruent to λ modulo R within the convex hull of $W\lambda$ in $\mathfrak{h}^*_{\mathbb{R}}$.

Let $\mathfrak{g} = A_2$ have base $B = \{\beta_1, \beta_2 \mid \beta_i = \varepsilon_i - \varepsilon_{i+1}\}$, so that $R^+ = \{\alpha_1 = \beta_1, \alpha_2 = \beta_2, \alpha_3 = \beta_1 + \beta_2\}$. With $\lambda = \alpha_3$, the set P_λ is the red points in

Let $\mathfrak{g} = A_2$ have base $B = \{\beta_1, \beta_2 \mid \beta_i = \varepsilon_i - \varepsilon_{i+1}\}$, so that $R^+ = \{\alpha_1 = \beta_1, \alpha_2 = \beta_2, \alpha_3 = \beta_1 + \beta_2\}$. With $\lambda = \alpha_3$, the set P_λ is the red points in

Let $\mathfrak{g} = A_2$ have base $B = \{\beta_1, \beta_2 \mid \beta_i = \varepsilon_i - \varepsilon_{i+1}\}$, so that $R^+ = \{\alpha_1 = \beta_1, \alpha_2 = \beta_2, \alpha_3 = \beta_1 + \beta_2\}$. With $\lambda = \alpha_3$, the set P_λ is the red points in

Let $\mathfrak{g} = A_2$ have base $B = \{\beta_1, \beta_2 \mid \beta_i = \varepsilon_i - \varepsilon_{i+1}\}$, so that $R^+ = \{\alpha_1 = \beta_1, \alpha_2 = \beta_2, \alpha_3 = \beta_1 + \beta_2\}$. With $\lambda = \alpha_3$, the set P_λ is the red points in

Let $\mathfrak{g} = A_2$ have base $B = \{\beta_1, \beta_2 \mid \beta_i = \varepsilon_i - \varepsilon_{i+1}\}$, so that $R^+ = \{\alpha_1 = \beta_1, \alpha_2 = \beta_2, \alpha_3 = \beta_1 + \beta_2\}$. With $\lambda = \alpha_3$, the set P_λ is the red points in

Let $\mathfrak{g} = A_2$ have base $B = \{\beta_1, \beta_2 \mid \beta_i = \varepsilon_i - \varepsilon_{i+1}\}$, so that $R^+ = \{\alpha_1 = \beta_1, \alpha_2 = \beta_2, \alpha_3 = \beta_1 + \beta_2\}$. With $\lambda = \alpha_3$, the set P_λ is the red points in

Let $\mathfrak{g} = A_2$ have base $B = \{\beta_1, \beta_2 \mid \beta_i = \varepsilon_i - \varepsilon_{i+1}\}$, so that $R^+ = \{\alpha_1 = \beta_1, \alpha_2 = \beta_2, \alpha_3 = \beta_1 + \beta_2\}$. With $\lambda = \alpha_3$, the set P_λ is the red points in

Let $\mathfrak{g} = A_2$ have base $B = \{\beta_1, \beta_2 \mid \beta_i = \varepsilon_i - \varepsilon_{i+1}\}$, so that $R^+ = \{\alpha_1 = \beta_1, \alpha_2 = \beta_2, \alpha_3 = \beta_1 + \beta_2\}$. With $\lambda = \alpha_3$, the set P_λ is the red points in

Let $\mathfrak{g} = A_2$ have base $B = \{\beta_1, \beta_2 \mid \beta_i = \varepsilon_i - \varepsilon_{i+1}\}$, so that $R^+ = \{\alpha_1 = \beta_1, \alpha_2 = \beta_2, \alpha_3 = \beta_1 + \beta_2\}$. With $\lambda = \alpha_3$, the set P_λ is the red points in

Let $\mathfrak{g} = A_2$ have base $B = \{\beta_1, \beta_2 \mid \beta_i = \varepsilon_i - \varepsilon_{i+1}\}$, so that $R^+ = \{\alpha_1 = \beta_1, \alpha_2 = \beta_2, \alpha_3 = \beta_1 + \beta_2\}$. With $\lambda = \alpha_3$, the set P_λ is the red points in

Let $\mathfrak{g} = A_2$ have base $B = \{\beta_1, \beta_2 \mid \beta_i = \varepsilon_i - \varepsilon_{i+1}\}$, so that $R^+ = \{\alpha_1 = \beta_1, \alpha_2 = \beta_2, \alpha_3 = \beta_1 + \beta_2\}$. With $\lambda = \alpha_3$, the set P_λ is the red points in

Let $\mathfrak{g} = A_2$ have base $B = \{\beta_1, \beta_2 \mid \beta_i = \varepsilon_i - \varepsilon_{i+1}\}$, so that $R^+ = \{\alpha_1 = \beta_1, \alpha_2 = \beta_2, \alpha_3 = \beta_1 + \beta_2\}$. With $\lambda = \alpha_3$, the set P_λ is the red points in

Casimir element and Freudenthal's multiplicity formula

If $\{b_i\}$ is a basis of g, then there is a unique dual basis $\{b_i^*\}$ of g determined by $\langle b_i, b_i^* \rangle = \delta_{ij}$. The *Casimir element* is

$$\kappa = \sum_{b_i} b_i b_i^* \in U\mathfrak{g}$$

where the sum is over the basis $\{b_i\}$ and the dual basis $\{b_i^*\}$.

Casimir element and Freudenthal's multiplicity formula

If $\{b_i\}$ is a basis of g, then there is a unique dual basis $\{b_i^*\}$ of g determined by $\langle b_i, b_i^* \rangle = \delta_{ij}$. The *Casimir element* is

$$\kappa = \sum_{b_i} b_i b_i^* \in U\mathfrak{g}$$

where the sum is over the basis $\{b_i\}$ and the dual basis $\{b_i^*\}$.

Theorem

Let κ be the Casimir element of \mathfrak{g} .

1. κ does not depend on the choice of basis.

2. $\kappa \in \mathcal{Z}(U\mathfrak{g})$, the center of $U(\mathfrak{g})$.

Casimir element and Freudenthal's multiplicity formula

If $\{b_i\}$ is a basis of \mathfrak{g} , then there is a unique dual basis $\{b_i^*\}$ of \mathfrak{g} determined by $\langle b_i, b_i^* \rangle = \delta_{ij}$. The *Casimir element* is

$$\kappa = \sum_{b_i} b_i b_i^* \in U\mathfrak{g}$$

where the sum is over the basis $\{b_i\}$ and the dual basis $\{b_i^*\}$.

Theorem

Let κ be the Casimir element of \mathfrak{g} .

1. κ does not depend on the choice of basis.

2.
$$\kappa \in \mathcal{Z}(U\mathfrak{g})$$
, the center of $U(\mathfrak{g})$.

Theorem (Freudenthal's multiplicity formula)

Let m_{μ} be the dimension of $L(\lambda)_{\mu}$ in $L(\lambda)$, with $\lambda \in P^+$. Then m_{μ} is determined recursively by

$$m_{\mu} = \frac{2}{\langle \lambda, \lambda + 2\rho \rangle - \langle \mu, \mu + 2\rho \rangle} \sum_{\alpha \in \mathbb{R}^{+}} \sum_{i=1}^{\infty} \langle \mu + i\alpha, \alpha \rangle m_{\mu + i\alpha}.$$