Math 128: Lecture 17

May 5, 2014

Last time:

Fix a base $B=\left\{\beta_{i}, \ldots, \beta_{r}\right\}$ and a fund. chamber $C=\left\{\lambda \in \mathfrak{h}_{\mathbb{R}}^{*} \mid\left\langle\lambda, \beta_{i}\right\rangle>0\right\}$. Let $s_{i}=s_{\beta_{i}}$ and $\rho=\frac{1}{2} \sum_{\alpha \in R^{+}} \alpha$.
We saw $s_{i} \rho=\rho-\beta_{i}$ and $\rho=\sum_{i=1}^{r} \omega_{i} \in P^{++}$.

Theorem

1. W acts transitively on Weyl chambers.
2. Fix a base B. For all $\alpha \in R$ there is some $w \in W$ with $w(\alpha) \in B$.
3. For any base B, W is generated by simple reflections (reflections associated to simple roots).
We showed for all $\alpha \in R$, we have $s_{\alpha}=w s_{\beta} w^{-1}$ with $\beta \in B, w \in\left\langle s_{\gamma} \mid \gamma \in B\right\rangle$
4. W acts simply transitively on bases B of R.

More on W

Fix a base $B=\left\{\beta_{i}, \ldots, \beta_{r}\right\}$ and a fund. chamber $C=\left\{\lambda \in \mathfrak{h}_{\mathbb{R}}^{*} \mid\left\langle\lambda, \beta_{i}\right\rangle>0\right\}$. Let $s_{i}=s_{\beta_{i}}$ and $\rho=\frac{1}{2} \sum_{\alpha \in R^{+}} \alpha$.
We saw $s_{i} \rho=\rho-\beta_{i}$ and $\rho=\sum_{i=1}^{r} \omega_{i} \in P^{++}$.
Define the length of an element $w \in W$, written $\ell(w)$ as the length of a minimal word in simple reflections generating w.

More on W

Fix a base $B=\left\{\beta_{i}, \ldots, \beta_{r}\right\}$ and a fund. chamber $C=\left\{\lambda \in \mathfrak{h}_{\mathbb{R}}^{*} \mid\left\langle\lambda, \beta_{i}\right\rangle>0\right\}$.
Let $s_{i}=s_{\beta_{i}}$ and $\rho=\frac{1}{2} \sum_{\alpha \in R^{+}} \alpha$.
We saw $s_{i} \rho=\rho-\beta_{i}$ and $\rho=\sum_{i=1}^{r} \omega_{i} \in P^{++}$.
Define the length of an element $w \in W$, written $\ell(w)$ as the length of a minimal word in simple reflections generating w.
Other facts:

1. W has a unique longest word w_{0} which sends ρ to $-\rho$,
so that $w_{0} C$ is the unique Weyl chamber on the negative side of all hyperplanes.

More on W

Fix a base $B=\left\{\beta_{i}, \ldots, \beta_{r}\right\}$ and a fund. chamber $C=\left\{\lambda \in \mathfrak{h}_{\mathbb{R}}^{*} \mid\left\langle\lambda, \beta_{i}\right\rangle>0\right\}$.
Let $s_{i}=s_{\beta_{i}}$ and $\rho=\frac{1}{2} \sum_{\alpha \in R^{+}} \alpha$.
We saw $s_{i} \rho=\rho-\beta_{i}$ and $\rho=\sum_{i=1}^{r} \omega_{i} \in P^{++}$.
Define the length of an element $w \in W$, written $\ell(w)$ as the length of a minimal word in simple reflections generating w.
Other facts:

1. W has a unique longest word w_{0} which sends ρ to $-\rho$,
so that $w_{0} C$ is the unique Weyl chamber on the negative side of all hyperplanes.
2. The map det: $W \rightarrow\{ \pm 1\}$ defined by
$w \mapsto\left\{\begin{array}{cl}1 & \text { if } w \text { is the product of an even number of reflections, } \\ -1 & \text { if } w \text { is the product of an odd number of reflections, }\end{array}\right.$
is well-defined (and equal to $(-1)^{\ell(w)}$). This is called the alternating representation or sign representation of W, and is sometimes also written as $\varepsilon(w)$.

Back to representation theory

Recall some things we know about representations of \mathfrak{g} :

1. For every $\lambda \in \mathfrak{h}^{*}$, there's a highest weight representation

Back to representation theory

Recall some things we know about representations of \mathfrak{g} :

1. For every $\lambda \in \mathfrak{h}^{*}$, there's a highest weight representation
2. With $R^{+}=\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ and $y_{i} \in \mathfrak{g}_{-\alpha_{i}}, L(\lambda)$ is spanned by weight vectors

$$
y_{1}^{\ell_{1}} \cdots y_{m}^{\ell_{m}} v_{\lambda}^{+} \quad \text { with weight } \quad \lambda-\sum_{i=1}^{m} \ell_{m} \alpha_{m} .
$$

Back to representation theory

Recall some things we know about representations of \mathfrak{g} :

1. For every $\lambda \in \mathfrak{h}^{*}$, there's a highest weight representation
2. With $R^{+}=\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ and $y_{i} \in \mathfrak{g}_{-\alpha_{i}}, L(\lambda)$ is spanned by weight vectors

$$
y_{1}^{\ell_{1}} \cdots y_{m}^{\ell_{m}} v_{\lambda}^{+} \quad \text { with weight } \quad \lambda-\sum_{i=1}^{m} \ell_{m} \alpha_{m} .
$$

3. $L(\lambda)$ is finite-dimensional if and only if $\lambda \in P^{+}=\sum_{i=1}^{r} \omega_{i}$, where
ω_{i} is determined by $\left\langle\omega_{i}, \beta_{j}^{\vee}\right\rangle=\delta_{i j}$.

Back to representation theory

Recall some things we know about representations of \mathfrak{g} :

1. For every $\lambda \in \mathfrak{h}^{*}$, there's a highest weight representation
2. With $R^{+}=\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ and $y_{i} \in \mathfrak{g}_{-\alpha_{i}}, L(\lambda)$ is spanned by weight vectors

$$
y_{1}^{\ell_{1}} \cdots y_{m}^{\ell_{m}} v_{\lambda}^{+} \quad \text { with weight } \quad \lambda-\sum_{i=1}^{m} \ell_{m} \alpha_{m} .
$$

3. $L(\lambda)$ is finite-dimensional if and only if $\lambda \in P^{+}=\sum_{i=1}^{r} \omega_{i}$, where

$$
\omega_{i} \text { is determined by }\left\langle\omega_{i}, \beta_{j}^{\vee}\right\rangle=\delta_{i j} .
$$

4. If $L(\lambda)$ is finite-dimensional, then with $m_{\mu}=\operatorname{dim}\left(L(\lambda)_{\mu}\right)$, we have

$$
m_{\lambda}=1, \quad \text { and } m_{\mu}=m_{w \mu} \quad \text { for all } \quad w \in W .
$$

Back to representation theory

Recall some things we know about representations of \mathfrak{g} :

1. For every $\lambda \in \mathfrak{h}^{*}$, there's a highest weight representation
2. With $R^{+}=\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ and $y_{i} \in \mathfrak{g}_{-\alpha_{i}}, L(\lambda)$ is spanned by weight vectors

$$
y_{1}^{\ell_{1}} \cdots y_{m}^{\ell_{m}} v_{\lambda}^{+} \quad \text { with weight } \quad \lambda-\sum_{i=1}^{m} \ell_{m} \alpha_{m} .
$$

3. $L(\lambda)$ is finite-dimensional if and only if $\lambda \in P^{+}=\sum_{i=1}^{r} \omega_{i}$, where

$$
\omega_{i} \text { is determined by }\left\langle\omega_{i}, \beta_{j}^{\vee}\right\rangle=\delta_{i j} .
$$

4. If $L(\lambda)$ is finite-dimensional, then with $m_{\mu}=\operatorname{dim}\left(L(\lambda)_{\mu}\right)$, we have

$$
m_{\lambda}=1, \quad \text { and } m_{\mu}=m_{w \mu} \quad \text { for all } \quad w \in W .
$$

5. The set $P_{\lambda}=\left\{\mu \in \mathfrak{h}^{*} \mid \operatorname{dim}\left(L(\lambda)_{\mu}\right)>0\right\}$ is the set of weights congruent to λ modulo R within the convex hull of $W \lambda$ in $\mathfrak{h}_{\mathbb{R}}^{*}$.

Example

Let $\mathfrak{g}=A_{2}$ have base $B=\left\{\beta_{1}, \beta_{2} \mid \beta_{i}=\varepsilon_{i}-\varepsilon_{i+1}\right\}$, so that $R^{+}=\left\{\alpha_{1}=\beta_{1}, \alpha_{2}=\beta_{2}, \alpha_{3}=\beta_{1}+\beta_{2}\right\}$.
With $\lambda=\alpha_{3}$, the set P_{λ} is the red points in

so that $P_{\alpha_{3}}=W \alpha_{3} \sqcup\{0\}$ with $W \alpha_{3}=R$.

Example

Let $\mathfrak{g}=A_{2}$ have base $B=\left\{\beta_{1}, \beta_{2} \mid \beta_{i}=\varepsilon_{i}-\varepsilon_{i+1}\right\}$, so that $R^{+}=\left\{\alpha_{1}=\beta_{1}, \alpha_{2}=\beta_{2}, \alpha_{3}=\beta_{1}+\beta_{2}\right\}$.
With $\lambda=\alpha_{3}$, the set P_{λ} is the red points in

so that $P_{\alpha_{3}}=W \alpha_{3} \sqcup\{0\}$ with $W \alpha_{3}=R$.
What is m_{0} ??

Example

Let $\mathfrak{g}=A_{2}$ have base $B=\left\{\beta_{1}, \beta_{2} \mid \beta_{i}=\varepsilon_{i}-\varepsilon_{i+1}\right\}$, so that $R^{+}=\left\{\alpha_{1}=\beta_{1}, \alpha_{2}=\beta_{2}, \alpha_{3}=\beta_{1}+\beta_{2}\right\}$.
With $\lambda=\alpha_{3}$, the set P_{λ} is the red points in

so that $P_{\alpha_{3}}=W \alpha_{3} \sqcup\{0\}$ with $W \alpha_{3}=R$.
What is m_{0} ??

Example

Let $\mathfrak{g}=A_{2}$ have base $B=\left\{\beta_{1}, \beta_{2} \mid \beta_{i}=\varepsilon_{i}-\varepsilon_{i+1}\right\}$, so that $R^{+}=\left\{\alpha_{1}=\beta_{1}, \alpha_{2}=\beta_{2}, \alpha_{3}=\beta_{1}+\beta_{2}\right\}$.
With $\lambda=\alpha_{3}$, the set P_{λ} is the red points in

so that $P_{\alpha_{3}}=W \alpha_{3} \sqcup\{0\}$ with $W \alpha_{3}=R$.
What is m_{0} ??

Example

Let $\mathfrak{g}=A_{2}$ have base $B=\left\{\beta_{1}, \beta_{2} \mid \beta_{i}=\varepsilon_{i}-\varepsilon_{i+1}\right\}$, so that $R^{+}=\left\{\alpha_{1}=\beta_{1}, \alpha_{2}=\beta_{2}, \alpha_{3}=\beta_{1}+\beta_{2}\right\}$.
With $\lambda=\alpha_{3}$, the set P_{λ} is the red points in

so that $P_{\alpha_{3}}=W \alpha_{3} \sqcup\{0\}$ with $W \alpha_{3}=R$.
What is m_{0} ??

Example

Let $\mathfrak{g}=A_{2}$ have base $B=\left\{\beta_{1}, \beta_{2} \mid \beta_{i}=\varepsilon_{i}-\varepsilon_{i+1}\right\}$, so that $R^{+}=\left\{\alpha_{1}=\beta_{1}, \alpha_{2}=\beta_{2}, \alpha_{3}=\beta_{1}+\beta_{2}\right\}$.
With $\lambda=\alpha_{3}$, the set P_{λ} is the red points in

so that $P_{\alpha_{3}}=W \alpha_{3} \sqcup\{0\}$ with $W \alpha_{3}=R$.
What is m_{0} ??

Example

Let $\mathfrak{g}=A_{2}$ have base $B=\left\{\beta_{1}, \beta_{2} \mid \beta_{i}=\varepsilon_{i}-\varepsilon_{i+1}\right\}$, so that $R^{+}=\left\{\alpha_{1}=\beta_{1}, \alpha_{2}=\beta_{2}, \alpha_{3}=\beta_{1}+\beta_{2}\right\}$.
With $\lambda=\alpha_{3}$, the set P_{λ} is the red points in

so that $P_{\alpha_{3}}=W \alpha_{3} \sqcup\{0\}$ with $W \alpha_{3}=R$.
What is m_{0} ??

Example

Let $\mathfrak{g}=A_{2}$ have base $B=\left\{\beta_{1}, \beta_{2} \mid \beta_{i}=\varepsilon_{i}-\varepsilon_{i+1}\right\}$, so that $R^{+}=\left\{\alpha_{1}=\beta_{1}, \alpha_{2}=\beta_{2}, \alpha_{3}=\beta_{1}+\beta_{2}\right\}$.
With $\lambda=\alpha_{3}$, the set P_{λ} is the red points in

so that $P_{\alpha_{3}}=W \alpha_{3} \sqcup\{0\}$ with $W \alpha_{3}=R$.
What is m_{0} ??

Example

Let $\mathfrak{g}=A_{2}$ have base $B=\left\{\beta_{1}, \beta_{2} \mid \beta_{i}=\varepsilon_{i}-\varepsilon_{i+1}\right\}$, so that $R^{+}=\left\{\alpha_{1}=\beta_{1}, \alpha_{2}=\beta_{2}, \alpha_{3}=\beta_{1}+\beta_{2}\right\}$.
With $\lambda=\alpha_{3}$, the set P_{λ} is the red points in

so that $P_{\alpha_{3}}=W \alpha_{3} \sqcup\{0\}$ with $W \alpha_{3}=R$.
What is m_{0} ??

Example

Let $\mathfrak{g}=A_{2}$ have base $B=\left\{\beta_{1}, \beta_{2} \mid \beta_{i}=\varepsilon_{i}-\varepsilon_{i+1}\right\}$, so that $R^{+}=\left\{\alpha_{1}=\beta_{1}, \alpha_{2}=\beta_{2}, \alpha_{3}=\beta_{1}+\beta_{2}\right\}$.
With $\lambda=\alpha_{3}$, the set P_{λ} is the red points in

so that $P_{\alpha_{3}}=W \alpha_{3} \sqcup\{0\}$ with $W \alpha_{3}=R$.
What is m_{0} ??

Example

Let $\mathfrak{g}=A_{2}$ have base $B=\left\{\beta_{1}, \beta_{2} \mid \beta_{i}=\varepsilon_{i}-\varepsilon_{i+1}\right\}$, so that $R^{+}=\left\{\alpha_{1}=\beta_{1}, \alpha_{2}=\beta_{2}, \alpha_{3}=\beta_{1}+\beta_{2}\right\}$.
With $\lambda=\alpha_{3}$, the set P_{λ} is the red points in

so that $P_{\alpha_{3}}=W \alpha_{3} \sqcup\{0\}$ with $W \alpha_{3}=R$.
What is m_{0} ??

Example

Let $\mathfrak{g}=A_{2}$ have base $B=\left\{\beta_{1}, \beta_{2} \mid \beta_{i}=\varepsilon_{i}-\varepsilon_{i+1}\right\}$, so that $R^{+}=\left\{\alpha_{1}=\beta_{1}, \alpha_{2}=\beta_{2}, \alpha_{3}=\beta_{1}+\beta_{2}\right\}$.
With $\lambda=\alpha_{3}$, the set P_{λ} is the red points in

so that $P_{\alpha_{3}}=W \alpha_{3} \sqcup\{0\}$ with $W \alpha_{3}=R$.
What is m_{0} ??

Casimir element and Freudenthal's multiplicity formula

If $\left\{b_{i}\right\}$ is a basis of \mathfrak{g}, then there is a unique dual basis $\left\{b_{i}^{*}\right\}$ of \mathfrak{g} determined by $\left\langle b_{i}, b_{i}^{*}\right\rangle=\delta_{i j}$. The Casimir element is

$$
\kappa=\sum_{b_{i}} b_{i} b_{i}^{*} \in U \mathfrak{g}
$$

where the sum is over the basis $\left\{b_{i}\right\}$ and the dual basis $\left\{b_{i}^{*}\right\}$.

Casimir element and Freudenthal's multiplicity formula

If $\left\{b_{i}\right\}$ is a basis of \mathfrak{g}, then there is a unique dual basis $\left\{b_{i}^{*}\right\}$ of \mathfrak{g} determined by $\left\langle b_{i}, b_{i}^{*}\right\rangle=\delta_{i j}$. The Casimir element is

$$
\kappa=\sum_{b_{i}} b_{i} b_{i}^{*} \in U \mathfrak{g}
$$

where the sum is over the basis $\left\{b_{i}\right\}$ and the dual basis $\left\{b_{i}^{*}\right\}$.
Theorem
Let κ be the Casimir element of \mathfrak{g}.

1. κ does not depend on the choice of basis.
2. $\kappa \in \mathcal{Z}(U \mathfrak{g})$, the center of $U(\mathfrak{g})$.

Casimir element and Freudenthal's multiplicity formula

If $\left\{b_{i}\right\}$ is a basis of \mathfrak{g}, then there is a unique dual basis $\left\{b_{i}^{*}\right\}$ of \mathfrak{g} determined by $\left\langle b_{i}, b_{i}^{*}\right\rangle=\delta_{i j}$. The Casimir element is

$$
\kappa=\sum_{b_{i}} b_{i} b_{i}^{*} \in U \mathfrak{g}
$$

where the sum is over the basis $\left\{b_{i}\right\}$ and the dual basis $\left\{b_{i}^{*}\right\}$.

Theorem

Let κ be the Casimir element of \mathfrak{g}.

1. κ does not depend on the choice of basis.
2. $\kappa \in \mathcal{Z}(U \mathfrak{g})$, the center of $U(\mathfrak{g})$.

Theorem (Freudenthal's multiplicity formula)
Let m_{μ} be the dimension of $L(\lambda)_{\mu}$ in $L(\lambda)$, with $\lambda \in P^{+}$. Then m_{μ} is determined recursively by

$$
m_{\mu}=\frac{2}{\langle\lambda, \lambda+2 \rho\rangle-\langle\mu, \mu+2 \rho\rangle} \sum_{\alpha \in R^{+}} \sum_{i=1}^{\infty}\langle\mu+i \alpha, \alpha\rangle m_{\mu+i \alpha} .
$$

