Math 128: Lecture 16

May 2, 2014

Last time: Existence of bases

 $R^+(\gamma) = \{\beta_1, \beta_2, \beta_1 + \beta_2\}$

 $B^{+}(\gamma) = \{\beta_{1}, \beta_{2}\}$

$$\beta_{1} = \varepsilon_{2} - \varepsilon_{1}, \beta_{2} = \varepsilon_{1}$$

$$R = \{ \pm \beta_{1}, \pm \beta_{2}, \\ \pm (\beta_{1} + \beta_{2}), \pm (\beta_{1} + 2\beta_{2}) \}$$

$$R^{+}(\gamma) = \{ \beta_{1}, \beta_{2}, \beta_{1} + \beta_{2}, \beta_{1} + 2\beta_{2} \}$$

$$B^{+}(\gamma) = \{ \beta_{1}, \beta_{2} \}$$

Type B_2 : $\mathfrak{h}_{\varepsilon_1}$

 $\mathfrak{h}_{\varepsilon_2-\varepsilon_1}$

 $\mathfrak{h}_{\varepsilon_1+\varepsilon_2}$

Fix a fundamental chamber C, and therefore a base B and positive set of roots R^+ . With $B=\{\beta_1,\ldots,\beta_r\}$, let $s_i=s_{\beta_i}$. Let W be the group generated by $\{s_\alpha\mid\alpha\in R\}$.

Fix a fundamental chamber C, and therefore a base B and positive set of roots R^+ . With $B=\{\beta_1,\ldots,\beta_r\}$, let $s_i=s_{\beta_i}$. Let W be the group generated by $\{s_{\alpha}\mid \alpha\in R\}$.

Lemma

- 1. The Weyl group W is finite. \checkmark
- 2. The form \langle , \rangle on $\mathfrak{h}_{\mathbb{R}}^*$ is W-invariant, i.e. $\langle w(\alpha), \beta \rangle = \langle \alpha, w^{-1}(\beta) \rangle$, for all $\alpha, \beta \in R, w \in W$.
- 3. For all $\alpha \in R$, $w \in W$, we have $ws_{\alpha}w^{-1} = s_{w(\alpha)}$. Also, $w(\alpha^{\vee}) = w(\alpha)^{\vee}$.
- 4. The reflection associated to a simple root β setwise fixes $R^+ \{\beta\}$ and $R^- \{-\beta\}$. \checkmark

- 5. If $w = s_{i_1} s_{i_2} \cdots s_{i_{\ell-1}}$ sends β_{i_ℓ} to a negative root, then $w s_{i_\ell} = s_{i_1} \cdots s_{i_{m-1}} s_{i_{m+1}} \cdots s_{i_{\ell-1}}$ for some $1 \leq m < \ell$.
- 6. If $w = s_{i_1} s_{i_2} \cdots s_{i_\ell}$ with ℓ minimal, then $w(\beta_{i_\ell}) < 0$.

Fix a fundamental chamber C, and therefore a base B and positive set of roots R^+ . With $B=\{\beta_1,\ldots,\beta_r\}$, let $s_i=s_{\beta_i}$. Let W be the group generated by $\{s_\alpha\mid\alpha\in R\}$.

Lemma

- 1. The Weyl group W is finite. \checkmark
- 2. The form \langle , \rangle on $\mathfrak{h}_{\mathbb{R}}^*$ is W-invariant, i.e. $\langle w(\alpha), \beta \rangle = \langle \alpha, w^{-1}(\beta) \rangle$, for all $\alpha, \beta \in R, w \in W$.
- 3. For all $\alpha \in R$, $w \in W$, we have $ws_{\alpha}w^{-1} = s_{w(\alpha)}$. Also, $w(\alpha^{\vee}) = w(\alpha)^{\vee}$.
- 4. The reflection associated to a simple root β setwise fixes $R^+ \{\beta\}$ and $R^- \{-\beta\}$. \checkmark

Aside: Let
$$\rho = \frac{1}{2} \sum_{n \in \mathbb{R}^+} \alpha$$
.

- 5. If $w = s_{i_1} s_{i_2} \cdots s_{i_{\ell-1}}$ sends β_{i_ℓ} to a negative root, then $w s_{i_\ell} = s_{i_1} \cdots s_{i_{m-1}} s_{i_{m+1}} \cdots s_{i_{\ell-1}}$ for some $1 \leq m < \ell$.
- 6. If $w = s_{i_1} s_{i_2} \cdots s_{i_\ell}$ with ℓ minimal, then $w(\beta_{i_\ell}) < 0$.

Big theorem on Weyl groups

Theorem

- 1. W acts transitively on Weyl chambers.
- 2. Fix a base B. For all $\alpha \in R$ there is some $w \in W$ with $w(\alpha) \in B$.
- 3. For any base B, W is generated by simple reflections (reflections associated to simple roots).
- 4. W acts simply transitively on bases B of R.