Math 128: Lecture 13

April 21, 2014

So far:

So far we have

1. Finite-dimensional simple $\mathfrak{g}\text{-modules}~V$ are highest weight modules, i.e. there is some $v^+ \in V$ satisfying

 $hv^+ = \mu(h)v^+$ for some $\mu \in \mathfrak{h}^*$, and $h \in \mathfrak{h}$, and $\mathfrak{n}^-v^+ = 0$.

- 2. Highest weight modules (of weight μ)
 - (a) are simple,
 - (b) are pairwise isomorphic if and only if they have the same weight, and
 - (c) have top dimension $(\dim(V_{\mu}))$ equal to 1.

We also know that if $V_{\lambda} \neq 0$, then

$$\lambda = \mu - \sum_{i} \ell_i \beta_i \qquad \ell_i \in \mathbb{Z}_{\geq 0}, \beta_i \in B,$$

with for $\alpha_i \in R$, $x_i \in \mathfrak{g}_{\alpha_i}$, and $h \in \mathfrak{h}$,

$$h(x_1 \cdots x_m v^+) = \left(\mu + \sum_{i=1}^m \alpha_i\right) (h)(x_1 \cdots x_m v^+).$$
 (*)

Recall, to each $\alpha \in R^+$, there is a $\mathfrak{s}_{\alpha} \cong \mathfrak{sl}_2$ given by

$$\mathfrak{s}_{\alpha} = \left\langle x_{\alpha}, y_{\alpha}, h_{\alpha^{\vee}} \mid x_{\alpha} \in \mathfrak{g}_{\alpha}, y_{\alpha} \in \mathfrak{g}_{-\alpha}, h_{\alpha^{\vee}} = \frac{2}{\langle \alpha, \alpha \rangle} h_{\alpha} \right\rangle \subseteq \mathfrak{g},$$

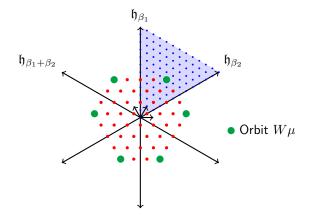
 $\text{ and } \langle h_{\alpha^\vee},h_\alpha\rangle=\alpha(h_{\alpha^\vee})=\langle \alpha^\vee,\alpha\rangle=2.$

Recall, to each $\alpha \in R^+$, there is a $\mathfrak{s}_{\alpha} \cong \mathfrak{sl}_2$ given by

$$\mathfrak{s}_{\alpha} = \left\langle x_{\alpha}, y_{\alpha}, h_{\alpha^{\vee}} \mid x_{\alpha} \in \mathfrak{g}_{\alpha}, y_{\alpha} \in \mathfrak{g}_{-\alpha}, h_{\alpha^{\vee}} = \frac{2}{\langle \alpha, \alpha \rangle} h_{\alpha} \right\rangle \subseteq \mathfrak{g},$$

and $\langle h_{\alpha^{\vee}}, h_{\alpha} \rangle = \alpha(h_{\alpha^{\vee}}) = \langle \alpha^{\vee}, \alpha \rangle = 2.$

So if V is finite-dimensional of weight μ , its weight spaces look like



Proposition

Let V be a highest weight module generated by primitive v^+ of weight μ .

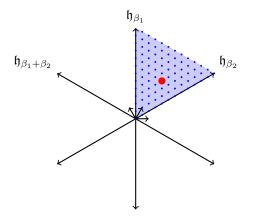
- (a) If V is finite-dimensional, then $\langle \mu, \beta^{\vee} \rangle \in \mathbb{Z}_{\geq 0}$ for all $\beta \in B$. And if $\langle \mu, \beta^{\vee} \rangle \in \mathbb{Z}_{\geq 0}$ for all $\beta \in B$, then $\langle \mu, \alpha^{\vee} \rangle \in \mathbb{Z}_{\geq 0}$ for all $\alpha \in R^+$.
- (b) If ⟨μ, α[∨]⟩ ∈ Z_≥0 for each α ∈ R⁺, as a s_α-module, V is the sum of finite-dimensional s_α-modules.
- (c) The set of weights of V is invariant under the action of W. In particular, there is a bijection exchanging V_{λ} and $V_{s_{\alpha}(\lambda)}$, and so $\dim(V_{\lambda}) = \dim(V_{s_{\alpha}(\lambda)})$.

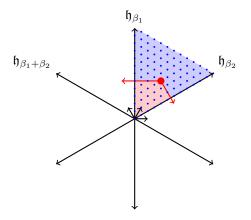
Proposition

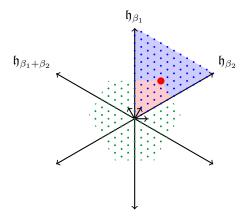
Let V be a highest weight module generated by primitive v^+ of weight μ .

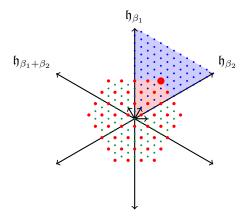
- (a) If V is finite-dimensional, then $\langle \mu, \beta^{\vee} \rangle \in \mathbb{Z}_{\geq 0}$ for all $\beta \in B$. And if $\langle \mu, \beta^{\vee} \rangle \in \mathbb{Z}_{\geq 0}$ for all $\beta \in B$, then $\langle \mu, \alpha^{\vee} \rangle \in \mathbb{Z}_{\geq 0}$ for all $\alpha \in R^+$.
- (b) If ⟨μ, α[∨]⟩ ∈ Z_≥0 for each α ∈ R⁺, as a s_α-module, V is the sum of finite-dimensional s_α-modules.
- (c) The set of weights of V is invariant under the action of W. In particular, there is a bijection exchanging V_{λ} and $V_{s_{\alpha}(\lambda)}$, and so $\dim(V_{\lambda}) = \dim(V_{s_{\alpha}(\lambda)})$.

Since the weights of V are given by $\lambda = \mu - \sum_i \ell_i \beta_i$ with $\ell_i \in \mathbb{Z}_{\geq 0}, \beta_i \in B$, part (a) says $\langle \lambda, \beta^{\vee} \rangle \in \mathbb{Z}_{\geq 0}$ for all $\beta \in B$ and all weights of V.









The dominant integral weights $P^+ \subseteq \mathfrak{h}^*_{\mathbb{R}}$ are those μ which satisfy

 $\langle \mu, \beta^{\vee} \rangle \in \mathbb{Z}_{\geq 0}$ for all $\beta \in B$.

The dominant integral weights $P^+ \subseteq \mathfrak{h}^*_{\mathbb{R}}$ are those μ which satisfy

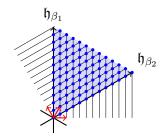
$$\langle \mu, \beta^{\vee} \rangle \in \mathbb{Z}_{\geq 0} \quad \text{ for all } \beta \in B.$$

But

$$\operatorname{proj}_{\beta}(\mu) = \frac{\langle \beta, \mu \rangle}{\langle \beta, \beta \rangle} \beta = \frac{1}{2} \langle \mu, \beta^{\vee} \rangle \beta,$$

so $\mu \in P^+$ if and only if

 $||\mathrm{proj}_\beta(\mu)|| = \tfrac{1}{2}\ell ||\beta|| \quad \text{ with } \ell = \langle \mu, \beta^\vee \rangle \in \mathbb{Z} \text{ for each } \beta \in B.$



The dominant integral weights $P^+ \subseteq \mathfrak{h}^*_{\mathbb{R}}$ are those μ which satisfy

$$\langle \mu, \beta^{\vee} \rangle \in \mathbb{Z}_{\geq 0}$$
 for all $\beta \in B$.

But

$$\operatorname{proj}_{\beta}(\mu) = \frac{\langle \beta, \mu \rangle}{\langle \beta, \beta \rangle} \beta = \frac{1}{2} \langle \mu, \beta^{\vee} \rangle \beta,$$

so $\mu \in P^+$ if and only if

 $||\operatorname{proj}_{\beta}(\mu)|| = \frac{1}{2}\ell||\beta||$ with $\ell = \langle \mu, \beta^{\vee} \rangle \in \mathbb{Z}$ for each $\beta \in B$. So find $\Omega = \{\omega_1, \dots, \omega_r\}$ so that

 $\mathrm{proj}_{\beta_i}(\omega_i) \text{ has length } \frac{1}{2}||\beta_i||, \quad \text{ and } \quad \mathrm{proj}_{\beta_j}(\omega_i)=0,$

The dominant integral weights $P^+ \subseteq \mathfrak{h}^*_{\mathbb{R}}$ are those μ which satisfy

$$\langle \mu, \beta^{\vee} \rangle \in \mathbb{Z}_{\geq 0}$$
 for all $\beta \in B$.

But

$$\operatorname{proj}_{\beta}(\mu) = \frac{\langle \beta, \mu \rangle}{\langle \beta, \beta \rangle} \beta = \frac{1}{2} \langle \mu, \beta^{\vee} \rangle \beta,$$

so $\mu \in P^+$ if and only if

$$\begin{split} ||\operatorname{proj}_{\beta}(\mu)|| &= \frac{1}{2}\ell ||\beta|| \quad \text{with } \ell = \langle \mu, \beta^{\vee} \rangle \in \mathbb{Z} \text{ for each } \beta \in B. \\ \text{So find } \Omega &= \{\omega_1, \dots, \omega_r\} \text{ so that} \\ \operatorname{proj}_{\beta_i}(\omega_i) \text{ has length } \frac{1}{2}||\beta_i||, \quad \text{and} \quad \operatorname{proj}_{\beta_j}(\omega_i) = 0, \end{split}$$

i.e.

$$\langle \omega_i, \beta_j^{\vee} \rangle = \delta_{i,j} \quad \text{for all } 1 \le i, j \le r.$$

The dominant integral weights $P^+ \subseteq \mathfrak{h}^*_{\mathbb{R}}$ are those μ which satisfy

$$\langle \mu, \beta^{\vee} \rangle \in \mathbb{Z}_{\geq 0}$$
 for all $\beta \in B$.

But

$$\operatorname{proj}_{\beta}(\mu) = \frac{\langle \beta, \mu \rangle}{\langle \beta, \beta \rangle} \beta = \frac{1}{2} \langle \mu, \beta^{\vee} \rangle \beta,$$

so $\mu \in P^+$ if and only if

 $||\operatorname{proj}_{\beta}(\mu)|| = \frac{1}{2}\ell||\beta||$ with $\ell = \langle \mu, \beta^{\vee} \rangle \in \mathbb{Z}$ for each $\beta \in B$. So find $\Omega = \{\omega_1, \dots, \omega_r\}$ so that

$$\operatorname{proj}_{\beta_i}(\omega_i)$$
 has length $\frac{1}{2}||\beta_i||$, and $\operatorname{proj}_{\beta_j}(\omega_i) = 0$,

i.e.

$$\langle \omega_i, \beta_j^{\vee} \rangle = \delta_{i,j} \quad \text{for all } 1 \leq i,j \leq r.$$

Then $P^+ = \mathbb{Z}_{\geq 0}\Omega$. We call the weights in Ω the fundamental weights. Let g be a finite-dimensional semisimple complex Lie algebra with roots R. Let $B = \{\beta_1, \ldots, \beta_r\}$ be a base for R and let $\Omega = \{\omega_1, \ldots, \omega_r\}$ be the corresponding fundamental weights.

Theorem

The simple finite-dimensional g-modules are highest weight modules $L(\mu)$ indexed by $\mu \in P^+ = \mathbb{Z}_{\geq 0}\Omega$.

Let g be a finite-dimensional semisimple complex Lie algebra with roots R. Let $B = \{\beta_1, \ldots, \beta_r\}$ be a base for R and let $\Omega = \{\omega_1, \ldots, \omega_r\}$ be the corresponding fundamental weights.

Theorem

The simple finite-dimensional g-modules are highest weight modules $L(\mu)$ indexed by $\mu \in P^+ = \mathbb{Z}_{\geq 0}\Omega$.

Some notation:

 $\begin{array}{ll} P^+ = \mathbb{Z}_{\geq 0} \Omega & \text{is the set of } dominant \ integral \ weights} \\ P^{++} = \mathbb{Z}_{>0} \Omega & \text{is the set of } strongly \ dominant \ integral \ weights} \\ P = \mathbb{Z} \Omega & \text{is the set of } integral \ weights} \\ B & \text{is the set of } simple \ roots} \\ R^{\vee} = \{\alpha^{\vee} \mid \alpha \in R\} & \text{is the set of } co-roots} \\ B^{\vee} = \{\beta^{\vee} \mid \beta \in R\} & \text{is the set of } simple \ co-roots} \end{array}$

We say the fundamental weights are dual to the simple co-roots.