Math 128: Lecture 12

April 18, 2014

Last time:

So far we have

1. Finite-dimensional simple $\mathfrak{g}\text{-modules}\;V$ are highest weight modules, i.e. there is some $v^+\in V$ satisfying

 $hv^+ = \mu(h)v^+$ for some $\mu \in \mathfrak{h}^*$, and $h \in \mathfrak{h}$, and $\mathfrak{n}^-v^+ = 0$.

- 2. Highest weight modules (of weight μ)
 - (a) are simple,
 - (b) are pairwise isomorphic if and only if they have the same weight, and
 - (c) have top dimension $(\dim(V_{\mu}))$ equal to 1.

We also know that if $V_{\lambda} \neq 0$, then

$$\lambda = \mu - \sum_{i} \ell_i \beta_i \qquad \ell_i \in \mathbb{Z}_{\geq 0}, \beta_i \in B,$$

with for $\alpha_i \in R$, $x_i \in \mathfrak{g}_{\alpha_i}$, and $h \in \mathfrak{h}$,

$$h(x_1 \cdots x_m v^+) = \left(\mu + \sum_{i=1}^m \alpha_i\right) (h)(x_1 \cdots x_m v^+).$$
 (*)

Let V be a finite-dimensional highest weight module. For a geometric intuition, we restrict to weights in $\mathfrak{h}_{\mathbb{R}}^*$, though this classification can be extended to $\mathfrak{h}^*.$

Let V be a finite-dimensional highest weight module. For a geometric intuition, we restrict to weights in $\mathfrak{h}_{\mathbb{R}}^*$, though this classification can be extended to $\mathfrak{h}^*.$

Recall, to each $\alpha \in R^+$, there is a $\mathfrak{s}_{\alpha} \cong \mathfrak{sl}_2$ given by

$$\mathfrak{s}_{\alpha} = \left\langle x_{\alpha}, y_{\alpha}, h_{\alpha^{\vee}} \mid x_{\alpha} \in \mathfrak{g}_{\alpha}, y_{\alpha} \in \mathfrak{g}_{-\alpha}, h_{\alpha^{\vee}} = \frac{2}{\langle \alpha, \alpha \rangle} h_{\alpha} \right\rangle \subseteq \mathfrak{g},$$

and $\langle h_{\alpha^{\vee}}, h_{\alpha} \rangle = \alpha(h_{\alpha^{\vee}}) = \langle \alpha^{\vee}, \alpha \rangle = 2.$

Let V be a finite-dimensional highest weight module. For a geometric intuition, we restrict to weights in $\mathfrak{h}^*_{\mathbb{R}}$, though this classification can be extended to \mathfrak{h}^* .

Recall, to each $\alpha \in R^+$, there is a $\mathfrak{s}_{\alpha} \cong \mathfrak{sl}_2$ given by

$$\mathfrak{s}_{\alpha} = \left\langle x_{\alpha}, y_{\alpha}, h_{\alpha^{\vee}} \mid x_{\alpha} \in \mathfrak{g}_{\alpha}, y_{\alpha} \in \mathfrak{g}_{-\alpha}, h_{\alpha^{\vee}} = \frac{2}{\langle \alpha, \alpha \rangle} h_{\alpha} \right\rangle \subseteq \mathfrak{g},$$

and $\langle h_{\alpha^{\vee}}, h_{\alpha} \rangle = \alpha(h_{\alpha^{\vee}}) = \langle \alpha^{\vee}, \alpha \rangle = 2.$

If $v_{\lambda} \in V_{\lambda} \neq 0$, then $\mathfrak{s}_{\alpha}v_{\lambda}$ is a finite-dimensional \mathfrak{s}_{α} -module

Let V be a finite-dimensional highest weight module. For a geometric intuition, we restrict to weights in $\mathfrak{h}^*_{\mathbb{R}}$, though this classification can be extended to \mathfrak{h}^* .

Recall, to each $\alpha \in R^+$, there is a $\mathfrak{s}_{\alpha} \cong \mathfrak{sl}_2$ given by

$$\mathfrak{s}_{\alpha} = \left\langle x_{\alpha}, y_{\alpha}, h_{\alpha^{\vee}} \mid x_{\alpha} \in \mathfrak{g}_{\alpha}, y_{\alpha} \in \mathfrak{g}_{-\alpha}, h_{\alpha^{\vee}} = \frac{2}{\langle \alpha, \alpha \rangle} h_{\alpha} \right\rangle \subseteq \mathfrak{g},$$

and $\langle h_{\alpha^{\vee}}, h_{\alpha} \rangle = \alpha(h_{\alpha^{\vee}}) = \langle \alpha^{\vee}, \alpha \rangle = 2.$

If $v_{\lambda} \in V_{\lambda} \neq 0$, then $\mathfrak{s}_{\alpha}v_{\lambda}$ is a finite-dimensional \mathfrak{s}_{α} -module, with weight spaces $V_{\lambda+\ell\alpha}$ having $h_{\alpha^{\vee}}$ -weight $\langle \lambda + \ell \alpha, \alpha^{\vee} \rangle = \langle \lambda, \alpha^{\vee} \rangle + 2\ell$.

Let V be a finite-dimensional highest weight module. For a geometric intuition, we restrict to weights in $\mathfrak{h}^*_{\mathbb{R}}$, though this classification can be extended to \mathfrak{h}^* .

Recall, to each $\alpha \in R^+$, there is a $\mathfrak{s}_{\alpha} \cong \mathfrak{sl}_2$ given by

$$\mathfrak{s}_{lpha} = \left\langle x_{lpha}, y_{lpha}, h_{lpha^{ee}} \mid x_{lpha} \in \mathfrak{g}_{lpha}, y_{lpha} \in \mathfrak{g}_{-lpha}, h_{lpha^{ee}} = rac{2}{\langle lpha, lpha
angle} h_{lpha}
ight
angle \subseteq \mathfrak{g},$$

and $\langle h_{\alpha^{\vee}}, h_{\alpha} \rangle = \alpha(h_{\alpha^{\vee}}) = \langle \alpha^{\vee}, \alpha \rangle = 2.$

If $v_{\lambda} \in V_{\lambda} \neq 0$, then $\mathfrak{s}_{\alpha} v_{\lambda}$ is a finite-dimensional \mathfrak{s}_{α} -module, with weight spaces $V_{\lambda+\ell\alpha}$ having $h_{\alpha^{\vee}}$ -weight $\langle \lambda + \ell \alpha, \alpha^{\vee} \rangle = \langle \lambda, \alpha^{\vee} \rangle + 2\ell$.

Therefore

 $\{\langle \lambda + \ell \alpha, \alpha^{\vee} \rangle \mid \ell \in \mathbb{Z}, V_{\lambda + \ell \alpha} \neq 0\}$ (counting multiplicities)

must be a set of integers (of the same parity) symmetric about 0.

Let V be a finite-dimensional highest weight module. For a geometric intuition, we restrict to weights in $\mathfrak{h}_{\mathbb{R}}^*$, though this classification can be extended to $\mathfrak{h}^*.$

Recall, to each $\alpha \in R^+$, there is a $\mathfrak{s}_{\alpha} \cong \mathfrak{sl}_2$ given by

$$\mathfrak{s}_{lpha} = \left\langle x_{lpha}, y_{lpha}, h_{lpha^{ee}} \mid x_{lpha} \in \mathfrak{g}_{lpha}, y_{lpha} \in \mathfrak{g}_{-lpha}, h_{lpha^{ee}} = rac{2}{\langle lpha, lpha
angle} h_{lpha}
ight
angle \subseteq \mathfrak{g},$$

and $\langle h_{\alpha^{\vee}}, h_{\alpha} \rangle = \alpha(h_{\alpha^{\vee}}) = \langle \alpha^{\vee}, \alpha \rangle = 2.$

If $v_{\lambda} \in V_{\lambda} \neq 0$, then $\mathfrak{s}_{\alpha}v_{\lambda}$ is a finite-dimensional \mathfrak{s}_{α} -module, with weight spaces $V_{\lambda+\ell\alpha}$ having $h_{\alpha^{\vee}}$ -weight $\langle \lambda + \ell \alpha, \alpha^{\vee} \rangle = \langle \lambda, \alpha^{\vee} \rangle + 2\ell$.

Therefore

 $\{\langle \lambda + \ell \alpha, \alpha^{\vee} \rangle \mid \ell \in \mathbb{Z}, V_{\lambda + \ell \alpha} \neq 0\}$ (counting multiplicities)

must be a set of integers (of the same parity) symmetric about 0. And so

$$\{\lambda + \ell \alpha \mid \ell \in \mathbb{Z}, V_{\lambda + \ell \alpha} \neq 0\}$$
 (counting multiplicities)

is a set of weights

(1) forming a string parallel to $\mathbb{R}\alpha$ and symmetric around \mathfrak{h}_{α} , and (2) whose distance from \mathfrak{h}_{α} are all in \mathbb{Z} or $\mathbb{Z} + \frac{1}{2}$.

When we prove the existence of a base associated to a set of roots, we will see that to every chamber of $\mathfrak{h}_{\mathbb{R}}^*$, there is a base determined by the walls of that chamber.

Proposition

Let V be a highest weight module generated by primitive v^+ of weight μ .

- (a) If V is finite-dimensional, then $\langle \mu, \beta^{\vee} \rangle \in \mathbb{Z}_{\geq 0}$ for all $\beta \in B$.
- (b) If $\langle \mu, \alpha^{\vee} \rangle \in \mathbb{Z}_{\geq} 0$, then for each $\alpha \in R^+$, as a \mathfrak{s}_{α} -module, V is the sum of finite-dimensional \mathfrak{s}_{α} -modules.
- (c) The set of weights of V is invariant under the action of W. In particular, there is a bijection exchanging V_{λ} and $V_{s_{\alpha}(\lambda)}$, and so $\dim(V_{\lambda}) = \dim(V_{s_{\alpha}(\lambda)})$.

Proposition

Let V be a highest weight module generated by primitive v^+ of weight μ .

- (a) If V is finite-dimensional, then $\langle \mu, \beta^{\vee} \rangle \in \mathbb{Z}_{\geq 0}$ for all $\beta \in B$.
- (b) If ⟨μ, α[∨]⟩ ∈ Z≥0, then for each α ∈ R⁺, as a s_α-module, V is the sum of finite-dimensional s_α-modules.
- (c) The set of weights of V is invariant under the action of W. In particular, there is a bijection exchanging V_{λ} and $V_{s_{\alpha}(\lambda)}$, and so $\dim(V_{\lambda}) = \dim(V_{s_{\alpha}(\lambda)})$.

It only remains to show that the set of weights in V is finite. This amounts to the fact that there are only finitely many weights "less than" μ in C for which $\langle \lambda, \alpha^{\vee} \rangle \in \mathbb{Z}_{\geq} 0$. (Later)