Math 128: Lecture 12

April 18, 2014

Last time:

So far we have

1. Finite-dimensional simple \mathfrak{g}-modules V are highest weight modules, i.e. there is some $v^{+} \in V$ satisfying
$h v^{+}=\mu(h) v^{+}$for some $\mu \in \mathfrak{h}^{*}$, and $h \in \mathfrak{h}$, and $\quad \mathfrak{n}^{-} v^{+}=0$.
2. Highest weight modules (of weight μ)
(a) are simple,
(b) are pairwise isomorphic if and only if they have the same weight, and
(c) have top dimension $\left(\operatorname{dim}\left(V_{\mu}\right)\right)$ equal to 1 .

We also know that if $V_{\lambda} \neq 0$, then

$$
\lambda=\mu-\sum_{i} \ell_{i} \beta_{i} \quad \ell_{i} \in \mathbb{Z}_{\geq 0}, \beta_{i} \in B
$$

with for $\alpha_{i} \in R, x_{i} \in \mathfrak{g}_{\alpha_{i}}$, and $h \in \mathfrak{h}$,

$$
\begin{equation*}
h\left(x_{1} \cdots x_{m} v^{+}\right)=\left(\mu+\sum_{i=1}^{m} \alpha_{i}\right)(h)\left(x_{1} \cdots x_{m} v^{+}\right) \tag{*}
\end{equation*}
$$

Let V be a finite-dimensional highest weight module. For a geometric intuition, we restrict to weights in $\mathfrak{h}_{\mathbb{R}}^{*}$, though this classification can be extended to \mathfrak{h}^{*}.

Let V be a finite-dimensional highest weight module. For a geometric intuition, we restrict to weights in $\mathfrak{h}_{\mathbb{R}}^{*}$, though this classification can be extended to \mathfrak{h}^{*}.
Recall, to each $\alpha \in R^{+}$, there is a $\mathfrak{s}_{\alpha} \cong \mathfrak{s l}_{2}$ given by

$$
\mathfrak{s}_{\alpha}=\left\langle x_{\alpha}, y_{\alpha}, h_{\alpha \vee} \mid x_{\alpha} \in \mathfrak{g}_{\alpha}, y_{\alpha} \in \mathfrak{g}_{-\alpha}, h_{\alpha \vee}=\frac{2}{\langle\alpha, \alpha\rangle} h_{\alpha}\right\rangle \subseteq \mathfrak{g}
$$

and $\left\langle h_{\alpha^{\vee}}, h_{\alpha}\right\rangle=\alpha\left(h_{\alpha^{\vee}}\right)=\left\langle\alpha^{\vee}, \alpha\right\rangle=2$.

Let V be a finite-dimensional highest weight module. For a geometric intuition, we restrict to weights in $\mathfrak{h}_{\mathbb{R}}^{*}$, though this classification can be extended to \mathfrak{h}^{*}.
Recall, to each $\alpha \in R^{+}$, there is a $\mathfrak{s}_{\alpha} \cong \mathfrak{s l}_{2}$ given by

$$
\mathfrak{s}_{\alpha}=\left\langle x_{\alpha}, y_{\alpha}, h_{\alpha \vee} \mid x_{\alpha} \in \mathfrak{g}_{\alpha}, y_{\alpha} \in \mathfrak{g}_{-\alpha}, h_{\alpha^{\vee}}=\frac{2}{\langle\alpha, \alpha\rangle} h_{\alpha}\right\rangle \subseteq \mathfrak{g}
$$

and $\left\langle h_{\alpha^{\vee}}, h_{\alpha}\right\rangle=\alpha\left(h_{\alpha^{\vee}}\right)=\left\langle\alpha^{\vee}, \alpha\right\rangle=2$.
If $v_{\lambda} \in V_{\lambda} \neq 0$, then $\mathfrak{s}_{\alpha} v_{\lambda}$ is a finite-dimensional \mathfrak{s}_{α}-module

Let V be a finite-dimensional highest weight module. For a geometric intuition, we restrict to weights in $\mathfrak{h}_{\mathbb{R}}^{*}$, though this classification can be extended to \mathfrak{h}^{*}.
Recall, to each $\alpha \in R^{+}$, there is a $\mathfrak{s}_{\alpha} \cong \mathfrak{s l}_{2}$ given by

$$
\mathfrak{s}_{\alpha}=\left\langle x_{\alpha}, y_{\alpha}, h_{\alpha \vee} \mid x_{\alpha} \in \mathfrak{g}_{\alpha}, y_{\alpha} \in \mathfrak{g}_{-\alpha}, h_{\alpha \vee}=\frac{2}{\langle\alpha, \alpha\rangle} h_{\alpha}\right\rangle \subseteq \mathfrak{g},
$$

and $\left\langle h_{\alpha^{\vee}}, h_{\alpha}\right\rangle=\alpha\left(h_{\alpha^{\vee}}\right)=\left\langle\alpha^{\vee}, \alpha\right\rangle=2$.
If $v_{\lambda} \in V_{\lambda} \neq 0$, then $\mathfrak{s}_{\alpha} v_{\lambda}$ is a finite-dimensional \mathfrak{s}_{α}-module, with weight spaces $V_{\lambda+\ell \alpha}$ having $h_{\alpha^{\vee}}$-weight $\left\langle\lambda+\ell \alpha, \alpha^{\vee}\right\rangle=\left\langle\lambda, \alpha^{\vee}\right\rangle+2 \ell$.

Let V be a finite-dimensional highest weight module. For a geometric intuition, we restrict to weights in $\mathfrak{h}_{\mathbb{R}}^{*}$, though this classification can be extended to \mathfrak{h}^{*}.
Recall, to each $\alpha \in R^{+}$, there is a $\mathfrak{s}_{\alpha} \cong \mathfrak{s l}_{2}$ given by

$$
\mathfrak{s}_{\alpha}=\left\langle x_{\alpha}, y_{\alpha}, h_{\alpha \vee} \mid x_{\alpha} \in \mathfrak{g}_{\alpha}, y_{\alpha} \in \mathfrak{g}_{-\alpha}, h_{\alpha \vee}=\frac{2}{\langle\alpha, \alpha\rangle} h_{\alpha}\right\rangle \subseteq \mathfrak{g},
$$

and $\left\langle h_{\alpha^{\vee}}, h_{\alpha}\right\rangle=\alpha\left(h_{\alpha^{\vee}}\right)=\left\langle\alpha^{\vee}, \alpha\right\rangle=2$.
If $v_{\lambda} \in V_{\lambda} \neq 0$, then $\mathfrak{s}_{\alpha} v_{\lambda}$ is a finite-dimensional \mathfrak{s}_{α}-module, with weight spaces $V_{\lambda+\ell \alpha}$ having $h_{\alpha^{\vee} \text {-weight }}\left\langle\lambda+\ell \alpha, \alpha^{\vee}\right\rangle=\left\langle\lambda, \alpha^{\vee}\right\rangle+2 \ell$.
Therefore

$$
\left\{\left\langle\lambda+\ell \alpha, \alpha^{\vee}\right\rangle \mid \ell \in \mathbb{Z}, V_{\lambda+\ell \alpha} \neq 0\right\} \quad \text { (counting multiplicities) }
$$

must be a set of integers (of the same parity) symmetric about 0 .

Let V be a finite-dimensional highest weight module. For a geometric intuition, we restrict to weights in $\mathfrak{h}_{\mathbb{R}}^{*}$, though this classification can be extended to \mathfrak{h}^{*}.
Recall, to each $\alpha \in R^{+}$, there is a $\mathfrak{s}_{\alpha} \cong \mathfrak{s l}_{2}$ given by

$$
\mathfrak{s}_{\alpha}=\left\langle x_{\alpha}, y_{\alpha}, h_{\alpha \vee} \mid x_{\alpha} \in \mathfrak{g}_{\alpha}, y_{\alpha} \in \mathfrak{g}_{-\alpha}, h_{\alpha \vee}=\frac{2}{\langle\alpha, \alpha\rangle} h_{\alpha}\right\rangle \subseteq \mathfrak{g},
$$

and $\left\langle h_{\alpha^{\vee}}, h_{\alpha}\right\rangle=\alpha\left(h_{\alpha^{\vee}}\right)=\left\langle\alpha^{\vee}, \alpha\right\rangle=2$.
If $v_{\lambda} \in V_{\lambda} \neq 0$, then $\mathfrak{s}_{\alpha} v_{\lambda}$ is a finite-dimensional \mathfrak{s}_{α}-module, with weight spaces $V_{\lambda+\ell \alpha}$ having $h_{\alpha^{\vee}}$-weight $\left\langle\lambda+\ell \alpha, \alpha^{\vee}\right\rangle=\left\langle\lambda, \alpha^{\vee}\right\rangle+2 \ell$.
Therefore

$$
\left\{\left\langle\lambda+\ell \alpha, \alpha^{\vee}\right\rangle \mid \ell \in \mathbb{Z}, V_{\lambda+\ell \alpha} \neq 0\right\} \quad \text { (counting multiplicities) }
$$

must be a set of integers (of the same parity) symmetric about 0 . And so

$$
\left\{\lambda+\ell \alpha \mid \ell \in \mathbb{Z}, V_{\lambda+\ell \alpha} \neq 0\right\} \quad \text { (counting multiplicities) }
$$

is a set of weights
(1) forming a string parallel to $\mathbb{R} \alpha$ and symmetric around \mathfrak{h}_{α}, and
(2) whose distance from \mathfrak{h}_{α} are all in \mathbb{Z} or $\mathbb{Z}+\frac{1}{2}$.

Aside about bases

Aside about bases

Aside about bases

Aside about bases

(

Aside about bases

(

Aside about bases

Aside about bases

When we prove the existence of a base associated to a set of roots, we will see that to every chamber of $\mathfrak{h}_{\mathbb{R}}^{*}$, there is a base determined by the walls of that chamber.

Proposition

Let V be a highest weight module generated by primitive v^{+}of weight μ.
(a) If V is finite-dimensional, then $\left\langle\mu, \beta^{\vee}\right\rangle \in \mathbb{Z}_{\geq 0}$ for all $\beta \in B$.
(b) If $\left\langle\mu, \alpha^{\vee}\right\rangle \in \mathbb{Z}_{\geq} 0$, then for each $\alpha \in R^{+}$, as a \mathfrak{s}_{α}-module, V is the sum of finite-dimensional \mathfrak{s}_{α}-modules.
(c) The set of weights of V is invariant under the action of W. In particular, there is a bijection exchanging V_{λ} and $V_{s_{\alpha}(\lambda)}$, and so $\operatorname{dim}\left(V_{\lambda}\right)=\operatorname{dim}\left(V_{s_{\alpha}(\lambda)}\right)$.

Proposition

Let V be a highest weight module generated by primitive v^{+}of weight μ.
(a) If V is finite-dimensional, then $\left\langle\mu, \beta^{\vee}\right\rangle \in \mathbb{Z}_{\geq 0}$ for all $\beta \in B$.
(b) If $\left\langle\mu, \alpha^{\vee}\right\rangle \in \mathbb{Z}_{\geq} \geq$, then for each $\alpha \in R^{+}$, as a \mathfrak{s}_{α}-module, V is the sum of finite-dimensional \mathfrak{s}_{α}-modules.
(c) The set of weights of V is invariant under the action of W. In particular, there is a bijection exchanging V_{λ} and $V_{s_{\alpha}(\lambda)}$, and so $\operatorname{dim}\left(V_{\lambda}\right)=\operatorname{dim}\left(V_{s_{\alpha}(\lambda)}\right)$.

It only remains to show that the set of weights in V is finite. This amounts to the fact that there are only finitely many weights "less than" μ in C for which $\left\langle\lambda, \alpha^{\vee}\right\rangle \in \mathbb{Z}_{\geq}$. (Later)

